

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation and Overview

- Frequent and long-term occlusions pose a challenging problem for multi-target tracking due to the complex interdependences between (potentially) all targets and should not be ignored.
- We propose a global, analytical occlusion model that allows computing the amount of occlusion and its derivative efficiently in closed form and in continuous space.

Multi-Target Tracking Framework [1]

- A continuous energy function (1) that accurately captures many important aspects of multi-target tracking.
- The continuous-valued state X is composed of all targets in all frames.
- A data term (2), three physically based constraints (3-5) and a regularizer (6):

$$E = E_{\rm obs} + \alpha E_{\rm dyn} + \beta E_{\rm exc} + \gamma E_{\rm per} + \delta E_{\rm reg}$$

$$E_{\text{obs}}(\mathbf{X}) = \sum_{t} \sum_{i} \left[\frac{\boldsymbol{v}_{i}^{t}(\mathbf{X}) \cdot \lambda - \sum_{g} \omega_{g}^{t} \frac{s_{g}^{2}}{\|\mathbf{X}_{i}^{t} - \mathbf{D}_{g}^{t}\|^{2} + s_{g}^{2}} \right] \qquad \text{obs}$$

$$E_{\text{obs}}(\mathbf{X}) = \sum_{t} \sum_{i} \|\mathbf{v}_{i}^{t} - \mathbf{v}_{g}^{t+1} + \mathbf{v}_{g}^{t+2}\|^{2}$$

$$E_{\mathsf{dyn}}(\mathbf{X}) = \sum_{t} \sum_{i} \left\| \mathbf{X}_{i}^{t} - 2\mathbf{X}_{i}^{t+1} + \mathbf{X}_{i}^{t+2} \right\|$$

$$\mathbf{f}_{\mathsf{per}}(\mathbf{X}) = \sum_{t} \sum_{i,j \neq i} \frac{s_g^2}{\|\mathbf{X}_i^t - \mathbf{X}_j^t\|^2}$$
e

$$E_{\text{exc}}(\mathbf{X}) = \sum_{t \in \{1, F\}} \sum_{i} \frac{1}{1 + \exp\left(-q \cdot b(\mathbf{X}_{i}^{t}) + 1\right)} \quad \text{pe}$$

$$E_{\text{reg}}(\mathbf{X}) = N + \sum_{i} \frac{1}{F(i)}$$
 reg

References

- [1] A. Andriyenko and K. Schindler. Multi-target tracking by continuous energy minimization. In CVPR, 2011.
- [2] M. Andriluka, S. Roth, and B. Schiele. Monocular 3d pose estimation and tracking by detection. In CVPR, 2010.
- [3] J.M. Ferryman and A. Shahrokni. Pets2009: Dataset and challenge. pages 1–6, 2009.
- [4] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo, D. Mostefa, and P. Soundararajan. The CLEAR 2006 evaluation. In CLEAR, 2006.

An Analytical Formulation of Global Occlusion Reasoning for Multi-Target Tracking

Anton Andrivenko¹

Konrad Schindler² Stefan Roth 1 ¹Department of Computer Science, TU Darmstadt, Germany ²Photogrammetry and Remote Sensing Group, ETH Zürich, Switzerland

Analytical Occlusion Reasoning

- This occlusion function is not differentiable.
- We propose to model the overlap by a product of two Gaussians (b).
- Their product is proportional to another Gaussian:

$$z_{ij} = \mathcal{N}(\mathbf{c}_i; \mathbf{c}_j, \mathbf{C}_{ij}) = \int \mathcal{N}_i(\mathbf{x}) \cdot \mathcal{N}_j(\mathbf{x}) \, d\mathbf{x}$$
(7)

• The 'occlusion' is then the unnormalized z_{ii} :

$$V_{ij} = \exp\left(-\frac{1}{2}[\mathbf{c}_i - \mathbf{c}_j]^\top \mathbf{C}_{ij}^{-1}[\mathbf{c}_i - \mathbf{c}_j]\right)$$
(8)

- The depth ordering is modeled with a vertical sigmoid function.
- The occlusion function remains differentiable.

The total visibility of target *i* is defined as:

$$v_i(\mathbf{X}) = \exp\bigg(-\sum_j \sigma_{ij} V_{ij}\bigg). \tag{10}$$

Limitations

- Gaussians only provide an approximation to the actual shape.
- The level of occlusion may be overestimated.
- Targets are assumed to be roughly the same size on a common ground plane.

Ground Truth

- Only very few public datasets with ground truth exist for crowded scenes.
- We make all our annotations available to the community:

goo.gl/3mBeS

		(1)

servation	(2)

dynamics (3)

```
(4)
exclusion
```

(5)ersistence

egularizer (6)

$$\frac{1}{\left(1 + \exp(y_i - y_j)\right)} \tag{9}$$

Experiments

Qualitative Comparison

Quantitative Evaluation

Crowd density	Method	GT	MT	ML	MOTA	MOTP
medium	OM	13.0	10.7	0.3	84.4 %	74.6 %
	[1]	13.0	10.3	0.3	82.5 %	73.9 %
	EKF	13.0	4.0	0.3	65.4 %	72.2 %
high	OM	49.5	15.5	14.2	49.4 %	63.5 %
	[1]	49.5	13.0	17.8	47.3 %	63.3 %
	EKF	49.5	1.5	30.2	22.5 %	61.3 %

Conclusion

- handling occlusions.

TECHNISCHE UNIVERSITÄT DARMSTADT

• Publicly available datasets: TUD-Stadtmitte [2] and PETS'09 [3]. • Varying maximal number of concurrent targets: Between 8 and 42. • Challenging sequences, originally acquired for crowd density estimation. • Standard CLEAR MOT metrics [4] for quantitative evaluation.

• We presented a global, analytical occlusion model for multi-object tracking. • The proposed occlusion function is continuous and differentiable.

• Its value and gradient are computed efficiently in closed form, thus making it perfectly suitable for gradient based optimization methods.

• Our experiments on crowded scenes reveal the importance of explicitly