ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation and Overview

Frequent and long-term occlusions pose a challenging problem for multi-target tracking due to the complex interdependences between (potentially) all targets and should not be ignored.

We propose a global, analytical occlusion model that allows computing the amount of occlusion and its derivative efficiently in closed form and in continuous space

Multi-Target Tracking Framework [1]

- A continuous energy function (1) that accurately captures many important aspects of multi-target tracking.
- The continuous-valued state X is composed of all targets in all frames
- A data term (2), three physically based constraints (3-5) and a regularizer (6):

$$
\begin{equation*}
E=E_{\mathrm{obs}}+\alpha E_{\mathrm{dyn}}+\beta E_{\mathrm{exc}}+\gamma E_{\mathrm{per}}+\delta E_{\mathrm{reg}} \tag{1}
\end{equation*}
$$

$$
\begin{array}{lr}
E_{\mathrm{obs}}(\mathbf{X})=\sum_{t} \sum_{i}\left[v_{i}^{t}(\mathbf{X}) \cdot \lambda-\sum_{g} \omega_{g}^{t} \frac{s_{g}^{2}}{\left\|\mathbf{X}_{i}^{t}--_{g}^{t}\right\|^{2}+s_{g}^{2}}\right] & \text { observation } \\
E_{\mathrm{dyn}}(\mathbf{X})=\sum_{t} \sum_{i}\left\|\mathbf{X}_{i}^{t}-2 \mathbf{X}_{i}^{t+1}+\mathbf{X}_{i}^{t+2}\right\|^{2} & \text { dynamics } \\
E_{\mathrm{per}}(\mathbf{X})=\sum_{t} \sum_{i, j \neq i} \frac{s_{g}^{2}}{\left\|\mathbf{X}_{i}^{t}-\mathbf{X}_{j}^{t}\right\|^{2}} & \text { exclusion } \\
E_{\text {exc }}(\mathbf{X})=\sum_{t \in\{1, F\}} \sum_{i} \frac{1}{1+\exp \left(-q \cdot b\left(\mathbf{X}_{i}^{t}\right)+1\right)} & \text { persistence } \\
E_{\mathrm{reg}}(\mathbf{X})=N+\sum_{i} \frac{1}{F(i)} & \text { regularizer }
\end{array}
$$

(3)

References

[1] A. Andriyenko and K. Schindler. Multi-target tracking by continuous energy minimization. In CVPR, 2011.
[2] M. Andriluka, S. Roth, and B. Schiele. Monocular 3d pose estimation and tracking by detection. In CVPR, 2010.
[3] J.M. Ferryman and A. Shahrokni. Pets2009: Dataset and challenge. pages 1-6, 2009
[4] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo, D. Mostefa, and P. Soundararajan The CLEAR 2006 evaluation. In CLEAR, 2006.

An Analytical Formulation of

Global Occlusion Reasoning for Multi-Target Tracking

TECHNISCHE
Anton Andriyenko ${ }^{1}$
Stefan Roth ${ }^{1}$
Konrad Schindler ${ }^{2}$
UNIVERSITAT
${ }^{1}$ Department of Computer Science, TU Darmstadt, Germany
${ }^{2}$ Photogrammetry and Remote Sensing Group, ETH Zürich, Switzerland

Analytical Occlusion Reasoning

(a)

(b)

Experiments

- Publicly available datasets: TUD-Stadtmitte [2] and PETS'09 [3].
- Varying maximal number of concurrent targets: Between 8 and 42
- Challenging sequences, originally acquired for crowd density estimation. - Standard CLEAR MOT metrics [4] for quantitative evaluation.

Qualitative Comparison

- Relative overlap between two bounding boxes (a) can be computed as a product of two simple indicator functions: $o_{i j}=\frac{1}{\int \mathscr{B}_{i}(\mathbf{x}) d \mathbf{x}} \int \mathscr{B}_{i}(\mathbf{x}) \mathscr{B}_{j}(\mathbf{x}) d \mathbf{x}$.
- This occlusion function is not differentiable.
- We propose to model the overlap by a product of two Gaussians (b)
- Their product is proportional to another Gaussian:

$$
\begin{equation*}
z_{i j}=\mathscr{N}\left(\mathbf{c}_{i} ; \mathbf{c}_{j}, \mathbf{C}_{i j}\right)=\int \mathscr{N}_{i}(\mathbf{x}) \cdot \mathscr{N}_{j}(\mathbf{x}) d \mathbf{x} \tag{7}
\end{equation*}
$$

- The 'occlusion' is then the unnormalized $z_{i j}$:

$$
\begin{equation*}
V_{i j}=\exp \left(-\frac{1}{2}\left[\mathbf{c}_{i}-\mathbf{c}_{j}\right]^{\top} \mathbf{C}_{i j}^{-1}\left[\mathbf{c}_{i}-\mathbf{c}_{j}\right]\right) \tag{8}
\end{equation*}
$$

- The depth ordering is modeled with a vertical sigmoid function. - The occlusion function remains differentiable.

The total visibility of target i is defined as:

$$
\begin{equation*}
v_{i}(\mathbf{X})=\exp \left(-\sum_{j} \sigma_{i j} V_{i j}\right) . \tag{10}
\end{equation*}
$$

Limitations

- Gaussians only provide an approximation to the actual shape.
- The level of occlusion may be overestimated.
- Targets are assumed to be roughly the same size on a common ground plane

Ground Truth

- Only very few public datasets with ground truth exist for crowded scenes.
- We make all our annotations available to the community:

goo.g//3mBeS

Quantitative Evaluation

Crowd density	Method	GT	MT	ML	MOTA	MOTP
medium	OM	13.0	$\mathbf{1 0 . 7}$	$\mathbf{0 . 3}$	$\mathbf{8 4 . 4} \%$	$\mathbf{7 4 . 6} \%$
	$[1]$	13.0	10.3	$\mathbf{0 . 3}$	82.5%	73.9%
	EKF	13.0	4.0	$\mathbf{0 . 3}$	65.4%	72.2%
high	OM	49.5	$\mathbf{1 5 . 5}$	$\mathbf{1 4 . 2}$	$\mathbf{4 9 . 4} \%$	$\mathbf{6 3 . 5} \%$
	$[1]$	49.5	13.0	17.8	47.3%	63.3%
	EKF	49.5	1.5	30.2	22.5%	61.3%

Conclusion

- We presented a global, analytical occlusion model for multi-object tracking - The proposed occlusion function is continuous and differentiable
- Its value and gradient are computed efficiently in closed form, thus making it perfectly suitable for gradient based optimization methods
- Our experiments on crowded scenes reveal the importance of explicitly handling occlusions.

