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Abstract

We present a principled model for occlusion reasoning
in complex scenarios with frequent inter-object occlusions,
and its application to multi-target tracking. To compute the
putative overlap between pairs of targets, we represent each
target with a Gaussian. Conveniently, this leads to an an-
alytical form for the relative overlap – another Gaussian
– which is combined with a sigmoidal term for modeling
depth relations. Our global occlusion model bears several
advantages: Global target visibility can be computed effi-
ciently in closed-form, and varying degrees of partial oc-
clusion can be naturally accounted for. Moreover, the de-
pendence of the occlusion on the target locations – i.e. the
gradient of the overlap – can also be computed in closed-
form, which makes it possible to efficiently include the pro-
posed occlusion model in a continuous energy minimization
framework. Experimental results on seven datasets confirm
that the proposed formulation consistently reduces missed
targets and lost trajectories, especially in challenging sce-
narios with crowds and severe inter-object occlusions.

1. Introduction

Tracking multiple targets simultaneously – in particular
tracking all relevant targets in a camera’s field of view – has
long been a difficult problem in computer vision [5, 19, 27].
Given an image sequence, the task is considered solved
when the location of each object is known in every frame,
and these locations are correctly associated across time to
establish object identities. Despite significant progress, ro-
bust and reliable tracking of multiple targets is still far from
being solved, especially in crowded environments. Proba-
bly the largest body of work in this area is concerned with
people tracking [3, 11, 27, etc.], which is also the applica-
tion focus here. Nonetheless, the proposed framework is
generic and not limited to a specific target class.

Keeping track of a single object can be accomplished
by detecting the object in each frame and “connecting the
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Figure 1. (left) Targets are represented as Gaussians in image space
(red, green, blue). (right) Pairwise occlusions between all targets
(cyan, yellow) are approximated by products of Gaussians.

dots” to a consistent trajectory. Such tracking-by-detection
approaches have enjoyed enormous popularity [e.g. 1, 6].
With multiple objects present, this becomes a lot more chal-
lenging due to the data association problem: in addition to
localizing the targets, each of them needs to be uniquely
identified – it is no longer obvious how many dots there
should be, and which to connect. To resolve these ambigui-
ties, physical constraints can be exploited as prior knowl-
edge. For example, collisions between different targets
should be avoided. The resulting complex dependencies be-
tween targets make the model energy difficult to minimize
(or in probabilistic terms, the posterior hard to maximize);
in a continuous setting the problem is highly non-convex
[2], in a discrete setting it is in general NP-hard [e.g. 4].

A further crucial aspect of multi-target tracking is inter-
object occlusion. In most real-world scenarios targets rou-
tinely become partially or completely occluded by other tar-
gets (and possibly also by other occluders). The occlusion
results in a lack of evidence: the presence of an occluded
target is not observable in the image data. However, simply
treating occlusion as missing data, i.e. ignoring the fact that
the observed occluder actually predicts the lack of evidence,
can heavily impair tracking performance.

Consequently, explicit occlusion handling is important
for successful multi-target tracking. Unfortunately, princi-
pled modeling of occlusion dependencies is rather tricky as
the following example illustrates (see Fig. 1):
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If target A is at location XA, then target B at XB

is occluded; but if A is a bit further to the left and B
slightly further to the right, then B is partially visible;
however then it would partially occlude target C; etc.

An explicit occlusion model thus leads to complex objec-
tive functions, which tend to be difficult and inefficient to
optimize. Therefore, most previous approaches either ig-
nore the issue altogether, or resort to some form of greedy
heuristic, usually separating target localization from occlu-
sion reasoning.

In this paper we present a global model of inter-object
occlusion, which differs from previous work in several
ways: (1) Occlusion modeling is an integral part of the
global tracking framework: occlusions and their influence
on the observation data are explicitly taken into account dur-
ing trajectory estimation; nonetheless all other model as-
sumptions (object dynamics, collision avoidance) are still
enforced for all targets including those in occlusion “shad-
ows”; (2) the influence of occlusions is systematically rep-
resented with closed-form functions that, moreover, are
continuously differentiable in closed form, making the ob-
jective efficient and amenable to gradient-based optimiza-
tion methods; (3) occlusion modeling is not reduced to a
binary decision of whether a target is occluded or visible,
but instead an estimate of the visible portion (fraction of the
bounding box) of each target is maintained and exploited.

To the best of our knowledge such tightly integrated and
accurate occlusion modeling has not been reported before
in the tracking literature. To demonstrate its advantages, we
present experimental results on seven different sequences,
in which the proposed method consistently improves track-
ing accuracy. In particular, we demonstrate tracking accura-
cies of up to 64% on sequences from the VS-PETS bench-
mark, which were intended only for density estimation and
considered too difficult for tracking individual targets.

2. Related Work
There is a vast body of literature on tracking, and a com-

plete review lies beyond the scope of this paper. In the fol-
lowing, we focus on visual multiple target tracking, and on
occlusion handling.

Multi-target tracking algorithms can be coarsely classified
into two groups, recursive and global. Recursive methods
estimate the current state only from the previous one and
often optimize each trajectory independently. Early exam-
ples of such methods are Kalman filter approaches [e.g., 5];
more recent work often uses particle filtering [14], allowing
non-linear models and multi-modal posterior distributions
[6, 13, 19, 22]. Global methods formulate tracking as an
optimization problem where all trajectories within a tempo-
ral window are optimized jointly [3, 11, 15, 17, 26]. To ren-
der such global approaches computationally tractable, the

space of possible target locations is restricted to a relatively
small set of discrete points in space, either by first locating
targets in each frame and then linking them, or by tracking
on a discrete location grid. Leibe et al. [17] pose the task
of detecting and linking targets as a quadratic binary pro-
gram that is solved to local optimality by custom heuristics.
Jiang et al. [15] employ integer linear programming to track
multiple targets, however the number of targets needs to be
known a-priori. To overcome this limitation, Berclaz et al.
[4] introduce virtual source and sink locations to initiate and
terminate trajectories. A common trait of these works is that
they lead to binary optimization problems, which are usu-
ally solved to (near) global optimality by relaxing them to
linear programs (LPs).

While global optimality is certainly desirable, it could
so far only be achieved by simplifying the objective func-
tion such that it becomes amenable to LP-relaxation, at the
cost of modeling the tracking task less faithfully. Recently,
Andriyenko and Schindler [2] have shown that, in practice,
local optimization of less contrived, non-convex energies
can outperform formulations that focus on global optimal-
ity. In the present work we extend this approach by adding
a continuous, global occlusion model that is amenable to
gradient-based optimization.

Occlusion reasoning plays an important role in many ar-
eas of computer vision, including pose estimation [9, 20],
object detection [10, 24], and more. In these cases, occlu-
sion modeling improves the results for the same reason: the
knowledge that the observed object is only partially (or not
at all) visible predicts that less evidence will be found in
the image, and the appraisal of the evidence can be adapted
accordingly.

In the realm of multi-target tracking the inter-object oc-
clusion problem has either been ignored [2, 4], or handled
iteratively. Xing et al. [25] generate short tracklets with-
out occlusion reasoning and then connect tracklets to longer
trajectories in such a way that the connections can bridge
gaps due to occlusions. Zhang et al. [26] propose a net-
work flow approach, where an optimal subset of trajectories
is first found with a network flow algorithm, then the trajec-
tories are greedily extended into occluded regions.

Seriously crowded environments, where large numbers
of dynamic targets and frequent occlusions make tracking
difficult even for a human observer, are still only rarely pro-
cessed at the level of individual targets. Notable exceptions
include the work of Kratz and Nishino [16], which relies on
spatio-temporal motion patterns of the crowd. Li et al. [18]
also address crowded environments and learn tracklet asso-
ciations online. Both approaches do not include any dedi-
cated occlusion reasoning.

In the present work we propose a way of representing oc-
clusions explicitly as part of a global tracking framework.



Symbol Description
X world coordinates of all targets in all frames
Xt

i world coordinates of target i in frame t
xt
i image coordinates of target i in frame t

(X,Y ) world coordinates on the ground plane
(x, y) image coordinates
F total number of frames
F (i) number of frames where target i is present
N total number of targets
D(t) number of detections in frame t
Dt

g world coordinates of detection g in frame t
vti(X) visibility (fraction) of target i in frame t
b(Xt

i) minimum boundary distance (target i at t)
Table 1. Notation

Not surprisingly, taking into account occlusions directly
during trajectory estimation significantly reduces the num-
ber of missed targets and lost tracks – especially in highly
crowded environments.

3. Multi-Object Tracking
We formulate multi-object tracking as an energy mini-

mization problem. Contrary to previous approaches [4, 15,
26] that restrict the state space to either non-maxima sup-
pressed detection responses or to a discrete grid, the domain
of our energy function is continuous. Although the objec-
tive function is not convex, [2] showed that in practice even
a locally optimal solution can yield better results, because
the formulation can be adapted to more truthfully represent
the real world. Our approach extends this paradigm with a
global framework for occlusion handling.

Before explaining the proposed occlusion reasoning ap-
proach in detail in Sec. 4, we first outline the non-convex en-
ergy minimization framework for multi-target tracking and
the optimization scheme for finding strong local minima.
Table 1 summarizes the notation.

3.1. Energy

The state vector X consists of (X,Y ) ground plane posi-
tions of all targets in all frames. The energy function E(X)
is composed of an observation model Eobs(X), which in-
cludes image evidence with explicit occlusion handling,
three physically motivated constraints, and a regularization
term Ereg(X) to keep the solution simple:

E = Eobs + αEdyn + βEexc + γEper + δEreg. (1)

A set of weights controls the relative influence of each term.

Observation model. Tracking-by-detection has emerged
to be one of the most reliable approaches for tracking mul-
tiple targets, which we also adopt here. To separate targets

from the background we use a sliding window linear SVM
classifier. Features include HOG [8] as well as histograms
of relative optic flow [23]. The basic premise of our ob-
servation model is to encourage trajectories to pass through
image locations with high detector responses. To address
localization uncertainty, the energy is modeled by smooth,
Cauchy-like bell curves centered at the detection peaks Dt

g

and weighted with the detector confidence ωt
g:

Eobs(X) =

F∑
t=1

N∑
i=1

[
λ·vti(X)−

D(t)∑
g=1

ωt
g

s2g
‖Xt

i−Dt
g‖2+s2g

]
(2)

The detector confidence is obtained by fitting a sigmoid to
the classifier margin, and is weighted with a simple Gaus-
sian height prior (µ=1.7m, σ=0.7m). The scale factor sg
accounts for the expected object size, and is set to 35 cm on
the ground plane for people tracking. At the same time, the
energy should increase if an existing target has no associ-
ated detection at all. To this end, the value λ=1/8 is added
uniformly to all targets. This penalty is only to be applied if
the target is fully visible. Otherwise it should be reduced (in
case of partial occlusion) or completely dropped when the
object is not visible at all. We therefore scale λ according
to the target’s visible fraction vti(X) in the image. In Sec. 4
we describe how to compute v in closed form. For now it
is important to note the dependence of the visibility on the
states of all (other) targets.

Trajectory constraints. The remaining energy terms en-
code prior assumptions about the motion trajectories of the
observed objects. This formulation as generic energy mini-
mization does not constrain their form in any way (as long
as they are differentiable), so that they can be chosen to suit
different applications. For the present study we follow our
previous work [2] and define them as

Edyn(X) =

F−2∑
t=1

N∑
i=1

∥∥Xt
i − 2Xt+1

i +Xt+2
i

∥∥2 (3)

Eexc(X) =

F∑
t=1

∑
i,j 6=i

s2g∥∥Xt
i −Xt

j

∥∥2 (4)

Eper(X) =
∑

t∈{1,F}

N∑
i=1

1

1 + exp
(
− q · b(Xt

i) + 1
) (5)

Ereg(X) = N +

N∑
i=1

1

F (i)
. (6)

In a nutshell, the individual energy terms have the following
effects:

• the dynamical model (Eq. 3) exploits the standard con-
stant velocity assumption, which helps to rule out im-
plausible motion patterns and to resolve ambiguities
between crossing trajectories;



• the exclusion term (Eq. 4) avoids collisions between
targets by penalizing configurations in which targets
come too close to each other;

• the persistence term (Eq. 5) encourages uninterrupted
trajectories that start and end on the boundary of the
tracking area. b(Xt

i) is the distance of Xt
i to the nearest

boundary and q is set to 1/350 in all our experiments;

• finally, the regularization term (Eq. 6) drives the opti-
mization towards simple solutions with fewer trajecto-
ries N that last over longer time spans F (i).

3.2. Minimization

To obtain an initial set of target trajectories, we employ
a conventional Extended Kalman Filter (EKF). The filter is
run independently on each putative target (disregarding oc-
clusions, collisions, and persistence), and the resulting tra-
jectories form the starting point for energy minimization.
Standard conjugate gradient descent is then employed to
find local minima of the full energy function (Eq. 1).

Additionally, the optimization scheme executes jump
moves to explore a larger region of the energy landscape, as
suggested in [2]. Existing trajectories can be split, merged,
extended, shrunk or removed entirely. Furthermore, new
trajectories can be inserted around those detection responses
that are not yet associated with any target. These jump
moves allow to change the number of targets compared to
the initialization, and to correctly handle varying numbers
of targets. The different types of jumps are executed in a
predefined order every 30 iterations only if they decrease
the energy.

4. Occlusion Reasoning
In typical real-world scenarios three different types of

occlusion take place: (1) in crowded scenes, targets fre-
quently occlude each other causing inter-object occlusion;
(2) a target may move behind static objects like trees, pillars
or road signs, which are all examples of common scene oc-
cluders; (3) depending on the object type, extensive articu-
lations, deformations or orientation changes may cause self-
occlusion. All three types of occlusion reduce – or com-
pletely suppress – the image evidence for a target’s pres-
ence, and consequently incur penalties in the observation
model. Specifically, in our tracking-by-detection setting
they cause the object detector to fail and thereby increase
Eobs.

In this paper we focus on the challenge of inter-object
occlusions (although it is straight-forward to extend the pre-
sented method to static scene occluders). In order to deal
with situations where dynamic targets occlude each other,
the main task is to overcome the difficulties which arise
from the complex dependence between a target’s visibility
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Figure 2. Schematic illustration (in 1D) of our occlusion term as a
function of the occluder’s position, Xj . The relative overlap zij –
the integral of the product of two Gaussians – is another Gaussian
with a greater variance and can be computed in closed form.

and the trajectories of several other targets that could poten-
tially block the line of sight.

4.1. Analytical global occlusion model

In the following we describe our approach to handle mu-
tual occlusion between all targets with a closed-form, con-
tinuously differentiable formulation. Since this procedure
is identical for each frame, the superscript t is omitted for
better readability.

Relative overlap. Let us for now assume that each target
i is associated with a binary indicator function

oi(x) =

{
1, x ∈ bb(Xi)

0, otherwise,
(7)

which is 1 on the bounding box bb(Xi) of target i. The total
image area of target i is thus given as

∫
oi(x) dx. To com-

pute the relative area of target i that is occluded by target j,
we simply have to calculate the (normalized) integral of the
product of both indicator functions:

1∫
oi(x) dx

∫
oi(x)oj(x) dx (8)

Note that we assume here that target j is in front of target
i; we will address the more general case below. If we de-
fine the target visibility using the relative area as given in
Eq. (8), then the visibility is not differentiable w.r.t. the ob-
ject positions of Xi or Xj , which precludes gradient-based
optimization methods.

To address this issue we here propose to use a Gaus-
sian “indicator” function Ni(x) := N (x; ci,Ci). Besides
achieving differentiability, this is motivated by the fact that
the shape of most objects can be well approximated by a cir-
cle or an oval (see Fig. 1 for an illustration). In our case of
person tracking, each person in image space is represented
by an anisotropic Gaussian with ci = xi and

Ci =

(
1
2

(
si
2

)2
0

0
(
si
2

)2
)
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Figure 3. Target i has a non-zero overlap with j and with k. How-
ever, it is only occluded by j. Hence, the overlap is weighted with
a sigmoid σ (dotted line) centered on yi.

with si being the target’s height on the image plane. As
before, we compute the area of overlap by integrating the
product of the two “indicator” functions, here Gaussians:

zij =

∫
Ni(x) · Nj(x) dx (9)

Besides differentiability, the choice of Gaussians allows this
integral to be computed in closed form. Conveniently, the
integral is another Gaussian [7]: zij = N (ci; cj ,Cij) with
Cij = Ci + Cj (see Fig. 2 for a schematic illustration).
Since we are interested in the relative overlap that corre-
sponds to the fraction of occlusion between to targets, we
compute it using the unnormalized Gaussian

Vij = exp
(
− 1

2 [ci − cj ]
>C−1ij [ci − cj ]

)
, (10)

which is differentiable w.r.t. ci and cj and has the desired
property that Vij = 1 when ci = cj . Moreover, due to the
symmetric property of Gaussians we have Vij = Vji.

Depth ordering. To also take into account the depth or-
dering of potentially overlapping targets, we could make
use of a binary indicator variable, which once again has
the issue of making the energy function non-differentiable.
We again replace it with a continuous, differentiable ver-
sion and use a sigmoid along the vertical image dimension
centered on yi (cf . Fig. 3): σij = (1 + exp(yi − yj))−1 .
Note that this definition relies on the common ground plane
assumption, which implies that the depth order corresponds
to the order of y-coordinates of all targets. Also note that if
we assume small variation in target size, then the occluder
will always appear larger than the occluded object on the
image plane and hence will entirely cover the farther target
if their center points share the same image location.

Visibility. To define the overall visibility of each target,
we first define an occlusion matrix O = (Oij)i,j with
Oij = σij · Vij , i 6= j and Oii = 0. The entry in row i
and column j of O thus corresponds to (a differentiable ap-
proximation of) the fraction of i that is occluded by j. We
can now approximate the total occlusion of i as

∑
j Oij ,

because in practice it is quite unlikely that the same image
region is occupied by more than two targets at once. The
most straightforward definition of the visible fraction of i
would thus be max(0, 1−

∑
j Oij). However, to avoid the

non-differentiable max function, we prefer to use an expo-
nential function, and define the visibility for target i as

vi(X) = exp

(
−
∑
j

Oij

)
. (11)

This definition allows us to efficiently approximate the vis-
ible area by taking into account mutual occlusion for each
pair of targets. Furthermore, by consistently using appropri-
ate differentiable functions the entire energy has a closed-
form expression and remains continuously differentiable.

Derivatives For the derivative of vi(X) there are two
cases depending on whether the derivative is taken w.r.t. the
target itself or w.r.t. any other target:

∂vi(X)

∂Xk
=


−
∑
j

∂Oij

∂Xi
· vi(X), k = i

−∂Oik

∂Xk
· vi(X), otherwise.

(12)

The partial derivatives of the occlusion matrix Oij w.r.t.
the target positions can be easily derived by systematically
applying product and chain rules. Note thatO (cf . Sec. 4.1)
is computed in image space. Our tracking model, however,
is entirely defined in world coordinates. Therefore, before
computing the derivatives of O, the centroids of the Gaus-
sians are projected onto the ground plane.

5. Experiments
Datasets. We demonstrate the validity of our approach on
seven publicly available video sequences, four of which are
very challenging due to high crowd density and frequent
inter-object occlusions.

The latest VS-PETS benchmark from 2009 [12] consists
of 15 multi-view sequences of lengths between 91 and 795
frames and offers a wide range of crowd density. The maxi-
mal number of individuals in a single frame ranges between
7 and 42. In this work we are concerned with monocular
tracking and use only the first view of six video sequences.
Besides the two easy sequences (S2L1 and S3MF1) with
medium crowd density, we also demonstrate the importance
of occlusion reasoning in extremely crowded environments
(S1L1-2, S1L2-1, S2L2, S2L3), which were recorded as a
benchmark for density estimation or event recognition. Ad-
ditionally, we use the TUD-Stadtmitte dataset [1], which
consists of 179 frames of a busy pedestrian street from a
low view point, making precise 3D estimation difficult.



Ground truth. To quantitatively evaluate multi-target
tracking algorithms, a manually annotated ground truth is
necessary. Acquiring such data is a cumbersome and expen-
sive procedure. Usually, a lot of frames containing many
targets – where each individual target has to be identified
and localized precisely – are needed to achieve meaning-
ful figures. Unfortunately, only very few datasets exist with
publicly available ground truth. For our experiments we an-
notated several very challenging scenarios of the VS-PETS
benchmark1. During annotation, all targets were marked
with a bounding box (including those that are entirely oc-
cluded) and associated with a unique ID.

Evaluation metrics. There is no standard evaluation pro-
tocol for multi-target tracking algorithms. We evaluate our
algorithm using the CLEAR metrics [21], which have be-
come the de-facto standard. Matching is done in 3D with a
1 meter hit/miss threshold. The Multi-Object Tracking Ac-
curacy (MOTA) equally combines all missed targets, false
positives and identity mismatches and is normalized with
the total number of targets such that 100% corresponds to
no errors. The Multi-Object Tracking Precision (MOTP) is
simply the normalized distance between the estimated and
the true target locations. Additionally, we compute the met-
rics proposed in [18] to count the number of mostly tracked
(MT, ≥ 80%) and mostly lost (ML, < 20%) trajectories.

Implementation. We rely on a hybrid MATLAB/C im-
plementation, for which tracking with occlusion reasoning
proceeds at about 1 second per frame on a standard PC. It is
likely that more optimized code or a GPU implementation
could lead to near real-time performance.

5.1. Quantitative evaluation

The seven sequences used in our experiments (cf . Sec-
tion 5) exhibit strong variations in crowd density, however
the expected amount of evidence per target influences the
weights of the energy terms in Eq. (1). Therefore, we split
the data into two groups corresponding to medium and high
crowd density. The parameters {α, β, γ, δ} are set to {.05,
1, 2, .5} for medium and to {.1, 1, .5, .5} for high density.

Table 2 shows for each dataset the total number of tar-
gets (GT), and the number of mostly tracked and mostly lost
trajectories, as well as accuracy and precision. For com-
parison, the results obtained without explicit occlusion rea-
soning as well as of a simple Extended Kalman Filter are
shown. Note that even our baseline without occlusion rea-
soning – for which we separately tuned the parameters to
yield optimal results – outperforms the current state-of-the-
art [2]. Still, by including the occlusion model we consis-
tently outperform the baseline.

1The annotations can be downloaded from the authors’ websites.

Sequence Method GT MT ML MOTA MOTP

TUD OM 9 5 0 68.6 64.0
Stadtmitte no OM 9 5 0 67.3 62.9

EKF 9 3 0 58.2 58.3
PETS OM 23 20 1 88.3 75.7
S2L1 no OM 23 19 1 85.1 75.8

EKF 23 9 1 68.0 76.5
PETS OM 7 7 0 96.3 84.1
S3MF1 no OM 7 7 0 95.1 82.9

EKF 7 2 0 69.9 81.8

mean OM 13.0 10.7 0.3 84.4 74.6
no OM 13.0 10.3 0.3 82.5 73.9
EKF 13.0 4.0 0.3 64.5 72.2

Table 2. Results for each dataset of the group with medium crowd
density. OM: proposed method with occlusion modeling, no OM:
same method without occlusion modeling, EKF: Extended Kalman
filter baseline.

Sequence Method GT MT ML MOTA MOTP

PETS OM 75 25 8 60.2 60.5
S2L2 no OM 75 20 14 55.2 61.5

EKF 75 2 32 28.6 60.3
PETS OM 44 10 20 43.8 66.3
S2L3 no OM 44 8 21 42.9 68.3

EKF 44 1 35 20.4 63.3
PETS OM 36 20 7 64.1 67.5
S1L1-2 no OM 36 18 10 62.1 65.4

EKF 36 3 17 34.6 63.2
PETS OM 43 7 22 29.3 59.8
S1L2-1 no OM 43 6 26 29.0 58.2

EKF 43 0 37 6.3 58.3

mean OM 49.5 15.5 14.2 49.4 63.5
no OM 49.5 13.0 17.8 47.3 63.3
EKF 49.5 1.5 30.2 22.5 61.3

Table 3. Results for the crowded sequences. Note the significant
improvement in “mostly tracked” and “mostly lost” trajectories
when using occlusion reasoning (OM). While tracking occluded
targets may in some cases slightly impair precision, it always
yields better accuracy by finding more targets.

It is important to bear in mind that improvements over
the baseline can only be expected when a target is signifi-
cantly (> 25%) occluded in a frame. In the medium group,
these constitute only 11% of all instances, such that the in-
crease in accuracy is in fact quite significant.

The importance of explicit occlusion reasoning becomes
more prominent for the dense group of sequences, which are
characterized by frequent occlusions and high crowd den-
sity (cf . Table 3). In this set, 34% of all target instances are
heavily occluded (> 50%). We again improve the accuracy
in each dataset between 1 and 10%, and are able to fully or
partially track most targets even in extremely crowded se-
quences, which were originally intended only for estimating
the crowd density and the number of people. The number of
fully recovered trajectories rises more than 20% on average,



Crowd Density Method Detection Rate FA Rate

low / medium
HOG+HOF 81.71 % 1.61
no OM [2] 88.34 % 0.27
with OM 91.82 % 0.28

high
HOG+HOF 41.39 % 4.01
no OM [2] 44.30 % 1.21
with OM 48.41 % 1.53

Table 4. Detection and false alarm rates.

and by 30% in the best case (S2L2). Many trajectories are
still lost in S1L2-1 because more than 20% of all targets are
occluded most of the time (i.e. occlusion is > 50% for more
than half of their total life span). In this setting, the state-
of-the-art pedestrian detector only achieves 19% recall. By
integrating the proposed occlusion model we are able to de-
tect 29% of all pedestrians. Note that the EKF tracker fails
completely in such scenes, as it constantly loses track of
targets disappearing into occlusion.

The recall and the number of false alarms per frame for
our full-body detector [23], our tracking framework without
occlusion reasoning [2] and our proposed method with ex-
plicit occlusion modeling are summarized in Table 4. The
figures are computed using the standard bounding box in-
tersection over union criterion. Note that although occlu-
sion reasoning imposes a slightly higher false alarm rate,
the ≈10% gain in recall corresponds to a much larger num-
ber of recovered targets.

5.2. Qualitative results

Figure 5 shows example results. Targets that are tracked
with our algorithm, but lost without explicit occlusion rea-
soning are highlighted with yellow bounding boxes. Note
the substantial number of newly tracked targets with occlu-
sion reasoning throughout all crowded scenes. False alarms
(red boxes) are due to either persistent, false detector re-
sponses (e.g., frame 215, 4th row) or to inaccurate target
localization (cf . frames 205 and 229, 4th row).

The impact of explicit occlusion reasoning on entire tra-
jectories is shown in Figure 4. Here, targets that were
mostly lost without explicit occlusion handling but partially
recovered with our method are rendered with red lines. Sim-
ilarly, blue lines show the change from partially to mostly
tracked trajectories. Note that due to different assignments
of targets to ground truth, trajectories may also deteriorate
with occlusion reasoning (dashed lines).

6. Conclusion and Future Work
We presented a model for global occlusion reasoning and

its applications to multi-target tracking. Contrary to previ-
ous approaches, we model occlusions with analytical func-
tions that are continuously differentiable in closed form,
which makes global occlusion computations efficient and
suitable for gradient-based optimization. Moreover, our for-

mulation maintains an estimate of the visible portion of each
object and relies on occlusion reasoning as an integrated
part of a global tracking framework. Consequently, occlu-
sions are taken into account during tracking and not only
as part of a post-processing step. We quantitatively eval-
uated our approach on several difficult datasets, which in
part were originally designed for crowd density estimation
and event recognition. Our results show a consistent, sig-
nificant performance improvement from explicit occlusion
handling, especially in crowded scenes.

In future work we plan to investigate appearance model-
ing in combination with occlusion reasoning. Furthermore,
we would like to utilize more specific body part detectors to
capture more targets.
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