

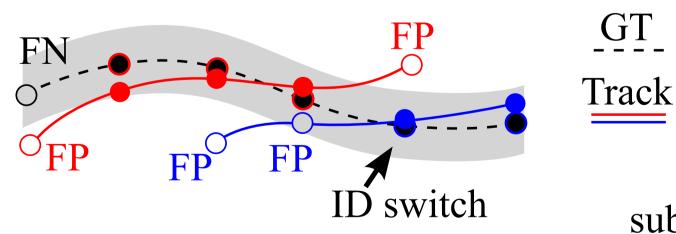
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

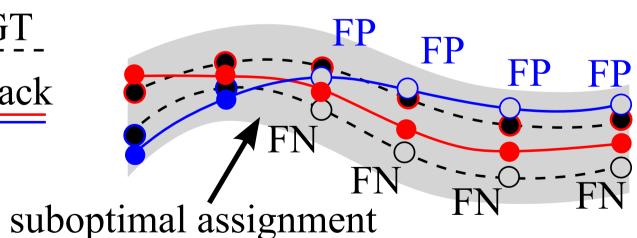
Status Quo and Overview

Same tracking result [2] – different ground truth

Ground truth	Recall	Precision	GT	MT	ML	ID	FM	MOTA	MOTP
white [1]	90.1	97.1	18	11	4	3	3	87.1	83.3
green [2]	69.3	99.5	10	4	0	7	6	68.3	76.6
blue [3]	72.1	99.1	10	4	0	7	6	70.8	71.9

Quantitative evaluation of multi-target tracking is challenging because:


- Multi-target tracking ground truth is not well defined.
- Multiple annotations available for some datasets.
- Multiple (ambiguous) evaluation protocols exist.
- There is no common training/testing dataset.


Metrics

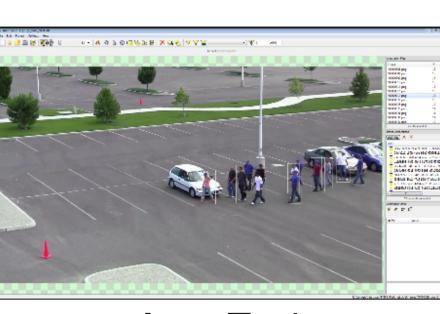
Many sensible metrics possible.

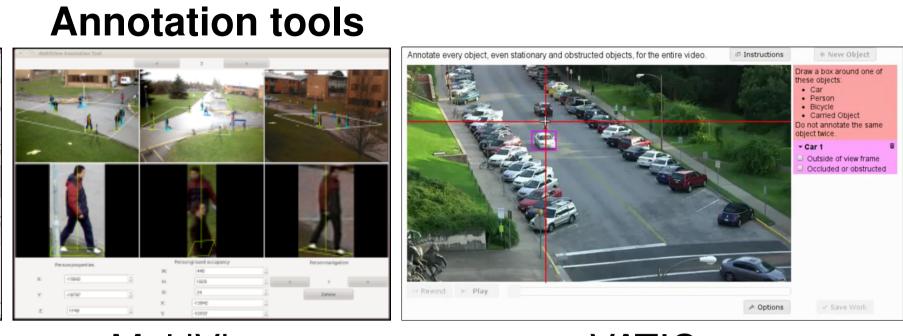
• CLEAR MOT [4]:

MOTA = 1 - (# errors)/(# gr. truth obj.), MOTP = Avg. alignment precision

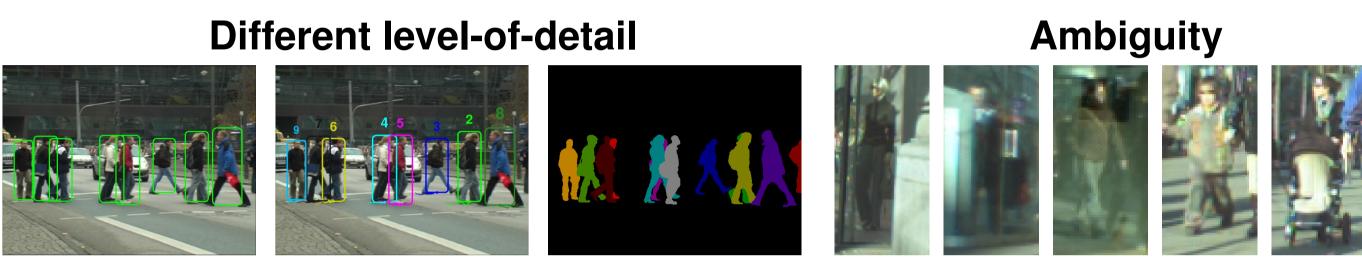
Ambiguities: Distance measure, assignment strategy, error weighting, ... Trajectory-based [5]:

Mostly Tracked	Mostly Lost	Fragment


Further metrics: configuration distance and purity, global mismatch error, ...

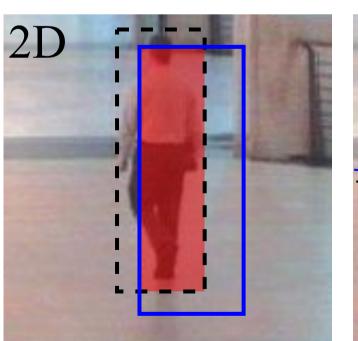

Challenges of Ground Truth Evaluation of Multi-Target Tracking

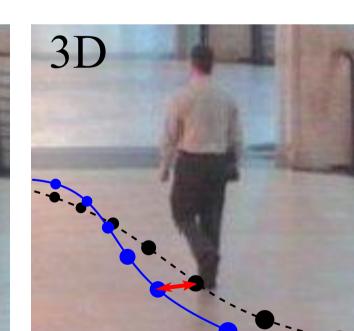
Anton Milan¹ (né Andriyenko) ¹Department of Computer Science, TU Darmstadt, Germany


Ground Truth

AnnoTool

MultiView




How does one ground truth perform with respect to another one?

	•	-		-						
"Solution"	Ground truth	Recall	Precision	GT	MT	ML	ID	FM	MOTA	MOTP
white	green	75.1	100.0	10	6	0	8	288	74.4	81.1
	blue	77.2	98.5	10	6	0	10	252	75.2	68.9
green	white	100.0	75.1	18	18	0	0	0	66.8	81.1
	blue	85.1	81.5	10	9	1	0	165	65.8	66.7
blue	white	98.5	77.2	18	18	0	2	13	69.2	68.9
	green	81.5	85.1	10	8	1	0	214	67.2	66.7

 \rightarrow One ground truth w.r.t. to another one performs just as well as (or worse than) a state-of-the-art tracker.

Evaluation Software

The distance between ground truth annotation and tracker output can be computed *e.g.* in 2D as intersection over union of bounding boxes, or in 3D as Euclidean distance on the ground plane.

Same result, same ground truth, different evaluation scripts:

	Evaluation software	Recall	Precision	FP	FN	MT	ML	ID	FΜ	MOTA	MOTP
	Milan et al. [6]	69.3	99.5	4	355	4	0	7	6	68.3	76.6
2D	Bagdanov et al. [7]	67.9	99.7	4	355	-	-	16	-	67.6	77.0
	Yang & Nevatia [3]	67.6	98.0	16	373	2	1	2	3	(66.0)	_
	Milan et al. [6]	59.4	85.3	118	469	2	0	9	9	48.4	59.8
က	Bernardin & Stiefelhagen [4]		(85.3)	118	469	-	-	10	-	48.4	(59.8)

The values in parentheses are not part of the script output.

 \rightarrow Metrics' definition alone is not enough.

 \rightarrow The same ground truth and evaluation script must be used.

ntation

Konrad Schindler²

Stefan Roth¹

²Photogrammetry and Remote Sensing Group, ETH Zürich, Switzerland

VATIC

Parameter Tuning

Tracker	Training	Recall	Precision	ID	FM	MOTA	MOTP
	per sequence	68.6	93.8	49	30	62.8	64.7
[2]	all sequences*	59.1	95.5	29	22	54.9	66.7
	cross validation	60.3	90.9	31	24	49.2	65.2
[8]	per sequence	57.1	95.4	160	124	49.2	66.0
	all sequences*	57.6	92.6	149	123	48.5	65.6
	cross validation	57.1	92.5	144	119	47.7	65.6
	per sequence	64.7	92.4	61	46	58.0	64.5
[6]	all sequences*	60.7	90.7	52	41	52.1	65.4
	cross validation	60.7	90.7	52	41	52.1	65.4

NOSt common training procession

Toward a Benchmark

benchmark, similar to Middlebury, PASCAL or KITTI.

- Data: Variability in camera angle and motion, person count, resolution.
- **Testing** / **Training:** A clear separation of data (see table above).
- **Detections:** A common set of detections may provide more objective measures of tracking performance.
- Annotation: Providing several, independent ground truth annotations may reduce the effect of ambiguities.
- Evaluation: One common evaluation metric and script is crucial.
- "Cheating": A centralized evaluation server with limited submissions.

References

- detection. In CVPR 2010.
- [2] A. Milan, S. Roth, and K. Schindler. Continuous energy minimization for multi-target tracking. PAMI. To appear.
- [3] B. Yang and R. Nevatia. An online learned CRF model for multi-target tracking. In CVPR 2012.
- for crowded scene. In CVPR 2009.
- [6] A. Milan, S. Roth, and K. Schindler. Detection- and trajectory-level exclusion in multiple object tracking.
- tracking a variable number of objects. In CVPR 2011.

TECHNISCHE UNIVERSITÄT DARMSTADT

\rightarrow Tracking performance is very dependent on training data. \rightarrow To avoid overfitting, dedicated test data is essential.

PETS S2L1 is 'solved'. It is time for a new challenging multi-target tracking

[1] M. Andriluka, S. Roth, and B. Schiele. Monocular 3D pose estimation and tracking by

[4] K. Bernardin and R. Stiefelhagen. Evaluating multiple object tracking performance: The CLEAR MOT metrics. Image and Video Processing, 2008(1):1–10, May 2008. [5] Y. Li, C. Huang, and R. Nevatia. Learning to associate: HybridBoosted multi-target tracker

[7] A. Bagdanov, A. Del Bimbo, F. Dini, G. Lisanti, and I. Masi. Compact and efficient posterity logging of face imagery for video surveillance. *IEEE Multimedia*, 19(4), 2012. [8] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Globally-optimal greedy algorithms for

