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Status Quo and Overview

Andriluka et al. [1] Milan et al. [2] Yang et al. [3]"Ground Truths"

Same tracking result [2] – different ground truth
Ground truth Recall Precision GT MT ML ID FM MOTA MOTP

white [1] 90.1 97.1 18 11 4 3 3 87.1 83.3
green [2] 69.3 99.5 10 4 0 7 6 68.3 76.6
blue [3] 72.1 99.1 10 4 0 7 6 70.8 71.9

Quantitative evaluation of multi-target tracking is challenging because:
•Multi-target tracking ground truth is not well defined.
•Multiple annotations available for some datasets.
•Multiple (ambiguous) evaluation protocols exist.
•There is no common training/testing dataset.

Metrics

Many sensible metrics possible.

•CLEAR MOT [4]:

MOTA = 1− (# errors)/(# gr. truth obj.), MOTP = Avg. alignment precision
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Ambiguities: Distance measure, assignment strategy, error weighting, ...
•Trajectory-based [5]:

Mostly Tracked FragmentationMostly Lost

Further metrics: configuration distance and purity, global mismatch error, ...

Ground Truth

Annotation tools
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How does one ground truth perform with respect to another one?

“Solution” Ground truth Recall Precision GT MT ML ID FM MOTA MOTP

white
green 75.1 100.0 10 6 0 8 288 74.4 81.1
blue 77.2 98.5 10 6 0 10 252 75.2 68.9

green
white 100.0 75.1 18 18 0 0 0 66.8 81.1
blue 85.1 81.5 10 9 1 0 165 65.8 66.7

blue
white 98.5 77.2 18 18 0 2 13 69.2 68.9
green 81.5 85.1 10 8 1 0 214 67.2 66.7

→ One ground truth w.r.t. to another one performs just as well as (or
worse than) a state-of-the-art tracker.

Evaluation Software

2D 3D The distance between ground truth
annotation and tracker output can
be computed e.g. in 2D as intersec-
tion over union of bounding boxes,
or in 3D as Euclidean distance on
the ground plane.

Same result, same ground truth, different evaluation scripts:
Evaluation software Recall Precision FP FN MT ML ID FM MOTA MOTP

2D

Milan et al. [6] 69.3 99.5 4 355 4 0 7 6 68.3 76.6
Bagdanov et al. [7] 67.9 99.7 4 355 - - 16 - 67.6 77.0
Yang & Nevatia [3] 67.6 98.0 16 373 2 1 2 3 (66.0) -

3D

Milan et al. [6] 59.4 85.3 118 469 2 0 9 9 48.4 59.8
Bernardin & Stiefelhagen [4] (59.4) (85.3) 118 469 - - 10 - 48.4 (59.8)

The values in parentheses are not part of the script output.

→ Metrics’ definition alone is not enough.
→ The same ground truth and evaluation script must be used.

Parameter Tuning

Tracker Training Recall Precision ID FM MOTA MOTP
per sequence 68.6 93.8 49 30 62.8 64.7

[2] all sequences∗ 59.1 95.5 29 22 54.9 66.7
cross validation 60.3 90.9 31 24 49.2 65.2
per sequence 57.1 95.4 160 124 49.2 66.0

[8] all sequences∗ 57.6 92.6 149 123 48.5 65.6
cross validation 57.1 92.5 144 119 47.7 65.6
per sequence 64.7 92.4 61 46 58.0 64.5

[6] all sequences∗ 60.7 90.7 52 41 52.1 65.4
cross validation 60.7 90.7 52 41 52.1 65.4

∗Most common training procedure.

→ Tracking performance is very dependent on training data.
→ To avoid overfitting, dedicated test data is essential.

Toward a Benchmark

PETS S2L1 is ‘solved’. It is time for a new challenging multi-target tracking
benchmark, similar to Middlebury, PASCAL or KITTI.

•Data: Variability in camera angle and motion, person count, resolution.
•Testing / Training: A clear separation of data (see table above).
•Detections: A common set of detections may provide more objective

measures of tracking performance.
•Annotation: Providing several, independent ground truth annotations may

reduce the effect of ambiguities.
•Evaluation: One common evaluation metric and script is crucial.
• “Cheating”: A centralized evaluation server with limited submissions.
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