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Abstract

In this work, we introduce the challenging problem of
joint multi-person pose estimation and tracking of an un-
known number of persons in unconstrained videos. Existing
methods for multi-person pose estimation in images cannot
be applied directly to this problem, since it also requires to
solve the problem of person association over time in addi-
tion to the pose estimation for each person. We therefore
propose a novel method that jointly models multi-person
pose estimation and tracking in a single formulation. To
this end, we represent body joint detections in a video by a
spatio-temporal graph and solve an integer linear program
to partition the graph into sub-graphs that correspond to
plausible body pose trajectories for each person. The pro-
posed approach implicitly handles occlusions and trunca-
tions of persons. Since the problem has not been addressed
quantitatively in the literature, we introduce a challeng-
ing “Multi-Person PoseTrack” dataset, and also propose a
completely unconstrained evaluation protocol that does not
make any assumptions on the scale, size, location or the
number of persons. Finally, we evaluate the proposed ap-
proach and several baseline methods on our new dataset.
The source code, pre-trained models and the dataset are
publicly available. 1

1. Introduction
Human pose estimation has long been motivated for its

applications in understanding human interactions, activity
recognition, video surveillance and sports video analytics.
The field has progressed remarkably over the past few years
for pose estimation in images. The methods have advanced
from the pose estimation of single pre-localized persons
[32, 6, 42, 15, 17, 29, 5, 34] to the more challenging and
realistic case of multiple, potentially overlapping and trun-
cated persons [13, 9, 32, 17, 18]. Many applications, such
as mentioned before, however, aim to analyze human body
motion over time. While there exist a notable number of
works that track the pose of a single person in a video

1http://pages.iai.uni-bonn.de/iqbal_umar/
PoseTrack/

Figure 1: Example frames and annotations from the proposed
Multi-Person PoseTrack dataset.

[30, 10, 46, 35, 48, 21, 31, 7, 14, 19], multi-person human
pose estimation in unconstrained videos has not been ad-
dressed in the literature.

In this work, we address the problem of tracking the
poses of multiple persons in an unconstrained setting. This
means that we have to deal with large pose and scale vari-
ations, fast motions, and a varying number of persons and
visible body parts due to occlusion or truncation. In contrast
to previous works, we aim to solve the association of each
person across the video and the pose estimation together.
To this end, we build upon the recent methods for multi-
person pose estimation in images [32, 17, 18] that build a
spatial graph based on joint proposals to estimate the pose
of multiple persons in an image. In particular, we cast the
problem as an optimization of a densely connected spatio-
temporal graph connecting body joint candidates spatially
as well as temporally. The optimization problem is formu-
lated as a constrained Integer Linear Program (ILP) whose
feasible solution partitions the graph into valid body pose
trajectories for any unknown number of persons. In this
way, we can handle occlusions, truncations, and temporal
associations within a single formulation.

Since there exist no dataset that provides annotations to
quantitatively evaluate joint multi-person pose estimation
and tracking, we also propose a new challenging Multi-
Person PoseTrack dataset as a second contribution of the
paper. The dataset provides detailed and dense annotations
for multiple persons in each video, as shown in Fig. 1, and
introduces new challenges to the field of pose estimation in
videos. In order to evaluate the pose estimation and tracking
accuracy, we introduce a new protocol that also deals with
occluded body joints. We quantify the proposed method in
detail on the proposed dataset, and also report results for
several baseline methods.
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2. Related Work

Single person pose estimation in images has seen a re-
markable progress over the past few years [41, 32, 6, 42,
15, 17, 29, 5, 34]. However, all these approaches assume
that only a single person is visible in the image, and can-
not handle realistic cases where several people appear in
the scene, and interact with each other. In contrast to single
person pose estimation, multi-person pose estimation intro-
duces significantly more challenges, since the number of
persons in an image is not known a priori. Moreover, it is
natural that persons occlude each other during interactions,
and may also become partially truncated to various degrees.
Multi-person pose estimation has therefore gained much at-
tention recently [12, 39, 33, 45, 24, 13, 9, 3, 32, 17, 18].
Earlier methods in this direction follow a two-staged ap-
proach [33, 13, 9] by first detecting the persons in an image
followed by a human pose estimation technique for each
person individually. Such approaches are however applica-
ble only if people appear well separated and do not occlude
each other. Moreover, most single person pose estimation
methods always output a fixed number of body joints and
do not account for occlusion and truncation, which often is
the case in multi-person scenarios. Other approaches ad-
dress the problem using tree structured graphical models
[45, 39, 12, 25]. However, such models struggle to cope
with large pose variations, and are shown to be significantly
outperformed by more recent methods based on Convolu-
tional Neural Networks [32, 17]. For example, [32] jointly
estimate the pose of all persons visible in an image, while
also handling occlusions and truncations. The approach has
been further improved by stronger part detectors and effi-
cient approximations [17]. The approach in [18] also pro-
poses a simplification of [32] by tackling the problem lo-
cally for each person. However, it still relies on a separate
person detector.

Single person pose estimation in videos has also been
studied extensively in the literature [30, 10, 48, 35, 48,
21, 46, 31, 14, 19]. These approaches mainly aim to im-
prove pose estimation by utilizing temporal smoothing con-
straints [30, 10, 46, 35, 14] and/or optical flow information
[48, 21, 31], but they are not directly applicable to videos
with multiple potentially occluding persons.

In this work we focus on the challenging problem of joint
multi-person pose estimation and data association across
frames. While the problem has not been studied quantita-
tively in the literature 2, there exist early works towards the
problem [20, 2]. These approaches, however, do not reason
jointly about pose estimation and tracking, but rather fo-
cus on multi-person tracking alone. The methods follow a
multi-staged strategy, i.e. they first estimate body part loca-

2Contemporaneous to this work, the problem has also been tackled in
[16]

tions for each person separately and subsequently leverage
body part tracklets to facilitate person tracking. We on the
other hand propose to simultaneously estimate the pose of
multiple persons and track them over time. To this end, we
build upon the recent progress on multi-person pose estima-
tion in images [32, 17, 18] and propose a joint objective for
both problems.

Previous datasets used to benchmark pose estimation al-
gorithms in-the-wild are summarized in Table 1. While
there exist a number of datasets to evaluate single per-
son pose estimation methods in videos, such as e.g.,
J-HMDB [22] and Penn-Action [47], none of the video
datasets provides annotations to benchmark multi-person
pose estimation and tracking at the same time. To al-
low for a quantitative evaluation of this problem, we there-
fore also introduce a new “Multi-Person PoseTrack” dataset
which provides pose annotations for multiple persons in
each video to measure pose estimation accuracy, and also
provides a unique ID for each of the annotated persons
to benchmark multi-person pose tracking. The proposed
dataset introduces new challenges to the field of human pose
estimation and tracking since it contains a large amount of
appearance and pose variations, body part occlusions and
truncation, large scale variations, fast camera and person
movements, motion blur, and a sufficiently large number of
persons per video.

3. Multi-Person Pose Tracking
Our method jointly solves the problem of multi-person

pose estimation and tracking for all persons appearing in a
video together. We first generate a set of joint detection can-
didates in each video as illustrated in Fig. 2. From the detec-
tions, we build a graph consisting of spatial edges, connect-
ing the detections within a frame, and temporal edges con-
necting detections of the same joint type over frames. We
solve the problem using integer linear programming (ILP)
whose feasible solution provides the pose estimate for each
person in all video frames, and also performs person associ-
ation across frames. We first introduce the proposed method
and discuss the proposed dataset for evaluation in Sec. 4.

3.1. Spatio-Temporal Graph

Given a video sequence F containing an arbitrary num-
ber of persons, we generate a set of body joint detection
candidates D = {Df}f∈F where Df is the set for frame f .
Every detection d ∈ D at location xfd ∈ R2 in frame f
belongs to a joint type j ∈ J = {1, . . . , J}. Additional de-
tails regarding the used detector will be provided in Sec. 3.4.

For multi-person pose tracking, we aim to identify the
joint hypotheses that belong to an individual person in the
entire video. This can be formulated by a graph structure
G = (D,E) where D is the set of nodes. The set of edges
E consists of two types of edges, namely spatial edges Es



Figure 2: Top: Body joint detection hypotheses shown for three frames. Middle: Spatio-temporal graph with spatial edges (blue) and
temporal edges for head (red) and neck (yellow). We only show a subset of the edges. Bottom: Estimated poses for all persons in the
video. Each color corresponds to a unique person identity.

and temporal edges Et. The spatial edges correspond to the
union of edges of a fully connected graph for each frame,
i.e.

Es =
⋃
f∈F

Efs and Efs = {(d, d′) : d6=d′ ∧ d, d′ ∈ Df}.

(1)
Note that these edges connect joint candidates indepen-
dently of the associated joint type j. The temporal edges
connect only joint hypotheses of the same joint type over
two different frames, i.e.

Et = {(d, d′) : j=j′ ∧ d ∈ Df ∧ d′ ∈ Df ′

∧ 1≤|f − f ′|≤τ ∧ f, f ′ ∈ F}. (2)

The temporal connections are not only modeled for neigh-
boring frames, i.e. |f − f ′| = 1, but we also take temporal
relations up to τ frames into account to handle short-term
occlusions and missing detections. The graph structure is
illustrated in Fig. 2.

3.2. Graph Partitioning

By removing edges and nodes from the graph
G = (D,E), we obtain several partitions of the spatio-
temporal graph and each partition corresponds to a tracked
pose of an individual person. In order to solve the graph
partitioning problem, we introduce the three binary vectors
v ∈ {0, 1}|D|, s ∈ {0, 1}|Es|, and t ∈ {0, 1}|Et|. Each
binary variable implies if a node or edge is removed, i.e.

vd=0 implies that the joint detection d is removed. Simi-
larly, s(df ,d′f )=0 with (df , d

′
f ) ∈ Es implies that the spa-

tial edge between the joint hypothesis d and d′ in frame f
is removed while t(df ,d′f′ )=0 with (df , d

′
f ′) ∈ Et implies

that the temporal edge between the joint hypothesis d in
frame f and d′ in frame f ′ is removed.

A partitioning is obtained by minimizing the cost func-
tion

argmin
v,s,t

(〈v, φ〉+ 〈s, ψs〉+ 〈t, ψt〉) (3)

〈v, φ〉 =
∑
d∈D

vdφ(d) (4)

〈s, ψs〉 =
∑

(df ,d′f )∈Es

s(df ,d′f )ψs(df , d
′
f ) (5)

〈t, ψt〉 =
∑

(df ,d′f′ )∈Et

t(df ,d′f′ )ψt(df , d
′
f ′). (6)

This means that we search for a graph partitioning such that
the cost of the remaining nodes and edges is minimal. The
cost for a node d is defined by the unary term:

φ(d) = log
1− pd
pd

(7)

where pd ∈ (0, 1) corresponds to the probability of the joint
hypothesis d. Note that φ(d) is negative when pd>0.5 and
detections with a high confidence are preferred since they
reduce the cost function (3). The cost for a spatial or tem-



poral edge is defined similarly by

ψs(df , d
′
f ) = log

1− ps(df ,d′f )
ps(df ,d′f )

(8)

ψt(df , d
′
f ′) = log

1− pt(df ,d′f′ )

pt(df ,d′f′ )

. (9)

While ps denotes the probability that two joint detections d
and d′ in a frame f belong to the same person, pt denotes
the probability that two detections of a joint in frame f and
f ′ are the same. In Sec. 3.4 we will discuss how the proba-
bilities pd, ps(df ,d′f ), and pt(df ,d′f′ ) are learned.

In order to ensure that the feasible solutions of the ob-
jective (3) result in well defined body poses and valid pose
tracks, we have to add additional constraints. The first set of
constraints ensures that two joint hypotheses are associated
to the same person (s(df ,d′f )=1) only if both detections are
considered as valid, i.e., vdf =1 and vd′f =1:

s(df ,d′f ) ≤ vdf ∧ s(df ,d′f ) ≤ vd′f ∀(df , d′f ) ∈ Es.
(10)

The same holds for the temporal edges:

t(df ,d′f′ ) ≤ vdf ∧ t(df ,d′f′ ) ≤ vd′f′ ∀(df , d′f ′) ∈ Et.
(11)

The second set of constraints are transitivity constraints
in the spatial domain. Such transitivity constraints have
been proposed for multi-person pose estimation in im-
ages [32, 17, 18]. They enforce for any triplet of joint de-
tection candidates (df , d

′
f , d

′′
f ) that if df and d′f are asso-

ciated to one person and d′f and d′′f are also associated to
one person, i.e. s(df ,d′f )=1 and s(d′f ,d′′f )=1, then the edge
(df , d

′′
f ) should also be added:

s(df ,d′f ) + s(d′f ,d′′f ) − 1 ≤ s(df ,d′′f ) (12)

∀(df , d′f ), (d′f , d
′′
f ) ∈ Es.

An example of a transitivity constraint is illustrated in
Fig. 3a. The transitivity constraints can be used to enforce
that a human can have only one joint type j, e.g. only one
head. Let df and d′′f have the same joint type j while d′f
belongs to another joint type j′. Without transitivity con-
straints connecting df and d′′f with d′f might result in a
low cost. The transitivity constraints, however, enforce that
the binary cost ψs(df , d′′f ) is added. To prevent poses with
multiple joints, we thus only have to ensure that the binary
cost ψs(d, d′′) is very high if j=j′′. We discuss this more
in detail in Sec. 3.4.

In contrast to previous work, we also have to ensure
spatio-temporal consistency. Similar to the spatial transi-
tivity constraints (12), we can define temporal transitivity
constraints:

t(df ,d′f′ ) + t(d′f′ ,d′′f′′ ) − 1 ≤ t(df ,d′′f′′ ) (13)

∀(df , d′f ′), (d′f ′ , d′′f ′′) ∈ Et.
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Figure 3: (a) The spatial transitivity constraints (12) ensure that
if the two joint hypotheses df and d′′f are spatially connected to
d′f (red edges) then the cost of the spatial edge between df and
d′′f (green edge) also has to be added. (b) The temporal transitiv-
ity constraints (13) ensure transitivity for temporal edges (dashed).
(c) The spatio-temporal transitivity constraints (14) model transi-
tivity for two temporal edges and one spatial edge. (d) The spatio-
temporal consistency constraints (15) ensure that if two pairs of
joint hypotheses (df , d

′
f ′) and (d′′f , d

′′′
f ′) are temporally con-

nected (dashed red edges) and df and d′′f are spatially connected
(solid red edge) then the cost of the spatial edge between d′f ′ and
d′′′f ′ (solid green edge) also has to be added.

The last set of constraints are spatio-temporal constraints
that ensure that the pose is consistent over time. We define
two types of spatio-temporal constraints. The first type con-
sists of a triplet of joint detection candidates (df , d

′
f ′ , d′′f ′)

from two different frames f and f ′. The constraints are de-
fined as,

t(df ,d′f′ ) + t(df ,d′′f′ ) − 1 ≤ s(d′f′ ,d′′f′ )

t(df ,d′f′ ) + s(d′f′ ,d′′f′ ) − 1 ≤ t(df ,d′′f′ ) (14)

∀(df , d′f ′), (df , d
′′
f ′) ∈ Et,

and enforce transitivity for two temporal edges and one
spatial edge. The second type of spatio-temporal con-
straints are based on quadruples of joint detection candi-
dates (df , d

′
f ′ , d′′f , d

′′′
f ′) from two different frames f and

f ′. The spatio-temporal constraints ensure that if (df , d
′
f ′)

and (d′′f , d
′′′
f ′) are temporally connected and (df , d

′′
f ) are

spatially connected then the spatial edge (d′f ′ , d′′′f ′) has to
be added:

t(df ,d′f′ ) + t(d′′f ,d′′′f′ ) + s(df ,d′′f ) − 2 ≤ s(d′f′ ,d′′′f′ )

t(df ,d′f′ ) + t(d′′f ,d′′′f′ ) + s(d′f′ ,d′′′f′ ) − 2 ≤ s(df ,d′′f )
(15)

∀(df , d′f ′), (d′′f , d
′′′
f ′) ∈ Et.

An example of both types of spatio-temporal constraint can
be seen in Fig. 3c and Fig. 3d, respectively.

3.3. Optimization

We optimize the objective (3) with the branch-and-cut
algorithm of the ILP solver Gurobi. To reduce the runtime
for long sequences, we process the video batch-wise where
each batch consists of k = 31 frames. For the first k frames,
we build the spatio-temporal graph as discussed and opti-
mize the objective (3). We then continue to build a graph



for the next k frames and add the previously selected nodes
and edges to the graph, but fix them such that they cannot
be removed anymore. Since the graph partitioning produces
also small partitions, which usually correspond to clusters
of false positive joint detections, we remove any partition
that is shorter than 7 frames or has less than 6 nodes per
frame on average.

3.4. Potentials

In order to compute the unaries φ (7) and binaries ψ
(8),(9), we have to learn the probabilities pd, ps(df ,d′f ), and
pt(df ,d′f′ ).

The probability pd is given by the confidence of the
joint detector. As joint detector, we use the publicly avail-
able pre-trained CNN [17] trained on the MPII Multi-
Person Pose dataset [32]. In contrast to [17], we do not
assume that any scale information is given. We there-
fore apply the detector to an image pyramid with 4 scales
γ ∈ {0.6, 0.9, 1.2, 1.5}. For each detection d located at xfd ,
we compute a quadratic bounding box Bd = {xfd , hd}. We
use hd = 70

γ for the width and height. To reduce the num-
ber of detections, we remove all bounding boxes that have
an intersection-over-union (IoU) ratio over 0.7 with another
bounding box that has a higher detection confidence.

The spatial probability ps(df ,d′f ) depends on the joint
types j and j′ of the detections. If j=j′, we define
ps(df ,d′f )=IoU(Bd, Bd′). This means that a joint type j can-
not be added multiple times to a person except if the detec-
tions are very close. If a partition includes detections of
the same type in a single frame, the detections are merged
by computing the weighted mean of the detections, where
the weights are proportional to pd. If j 6=j′, we use the pre-
trained binaries [17] after a scale normalization.

The temporal probability pt(df ,d′f′ ) should be high if
two detections of the same joint type at different frames
belong to the same person. To that end, we build on
the idea recently used in multi-person tracking [40] and
compute dense correspondences between two frames us-
ing DeepMatching [43]. Let Kdf and Kd′f′ be the sets
of matched key-points inside the bounding boxes Bdf and
Bd′f′ and Kdd′=|Kdf ∪ Kd′f′ | and Kdd′=|Kdf ∩ Kd′f′ |
the union and intersection of these two sets. We then form
a feature vector by {K/K,min(pd, pd′),∆xdd′ , ‖∆xdd′‖}
where ∆xdd′ = xfd − xf

′

d′ . We also append the feature vec-
tor with non-linear terms as done in [40]. The mapping from
the feature vector to the probability pt(df ,d′f′ ) is obtained by
logistic regression.

4. The Multi-Person PoseTrack Dataset
In this section we introduce our new dataset for multi-

person pose estimation in videos. The MPII Multi-Person
Pose [1] is currently one of the most popular benchmarks
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Leeds Sports [23] 2000
MPII Pose [1] X X 40,522
We Are Family [12] X 3131
MPII Multi-Person Pose [32] X X X 14,161
MS-COCO Keypoints [27] X X X 105,698

J-HMDB [22] X X X 32,173
Penn-Action [47] X X 159,633
VideoPose [37] X 1286
Poses-in-the-wild [10] X 831
YouTube Pose [8] X 5000
FYDP [38] X 1680
UYDP [38] X 2000

Multi-Person PoseTrack X X X X 16,219

Table 1: A comparison of PoseTrack dataset with the existing re-
lated datasets for human pose estimation in images and videos.

for multi-person pose estimation in images, and covers
a wide range of activities. For each annotated image,
the dataset also provides unlabeled video clips ranging 20
frames both forward and backward in time relative to that
image. For our video dataset, we manually select a sub-
set of all available videos that contain multiple persons and
cover a wide variety of person-person or person-object in-
teractions. Moreover, the selected videos are chosen to con-
tain a large amount of body pose appearance and scale vari-
ation, as well as body part occlusion and truncation. The
videos also contain severe body motion, i.e., people oc-
clude each other, re-appear after complete occlusion, vary
in scale across the video, and also significantly change their
body pose. The number of visible persons and body parts
may also vary during the video. The duration of all pro-
vided video clips is exactly 41 frames. To include longer
and variable-length sequences, we downloaded the original
raw video clips using the provided URLs and obtained an
additional set of videos. To prevent an overlap with the ex-
isting data, we only considered sequences that are at least
150 frames apart from the training samples, and followed
the same rationale as above to ensure diversity.

In total, we compiled a set of 60 videos with the number
of frames per video ranging between 41 and 151. The num-
ber of persons ranges between 2 and 16 with an average
of more than 5 persons per video sequence, totaling over
16,000 annotated poses. The person heights are between
100 and 1200 pixels. We split the dataset into a training and
testing set with equal number of videos.

4.1. Annotations

As in [1], we annotate 14 body joints and a rectangle en-
closing the person’s head. The latter is required to estimate
the absolute scale which is used for evaluation. We assign
a unique identity to every person appearing in the video.
This person ID remains the same throughout the video un-



til the person moves out of the field-of-view. Since we do
not target person re-identification in this work, we assign a
new ID if a person re-appears in the frame. We also pro-
vide occlusion flags for all body joints. A joint is marked
occluded if it was in the field-of-view but became invisible
due to an occlusion. Truncated joints, i.e. those outside the
image border limits, are not annotated, therefore, the num-
ber of joints per person varies across the dataset. Very small
persons were zoomed to a reasonable size to accurately per-
form the annotations. To ensure good quality of the anno-
tations, all annotations are performed by trained in-house
workers, following a clearly defined protocol. An example
annotation can be seen in Fig. 1.

4.2. Experimental setup and evaluation metrics

Since the problem of simultaneous multi-person pose es-
timation and person tracking have not been quantitatively
evaluated in the literature, we define a new evaluation pro-
tocol for this problem. To this end, we follow the best prac-
tices followed in both multi-person pose estimation [32] and
multi-target tracking [28]. In order to evaluate whether a
part is predicted correctly, we use the widely adopted PCKh
(head-normalized probability of correct keypoint) metric
[1], which considers a body joint to be correctly localized if
the predicted location of the joint is within a certain thresh-
old from the true location. Due to the large scale variation of
people across videos and even within a frame, this threshold
needs to be selected adaptively, based on the person’s size.
To that end, [1] propose to use 30% of the head box diago-
nal. We have found this threshold to be too relaxed because
recent pose estimation approaches are capable of predicting
the joint locations rather accurately. Therefore, we use a
more strict evaluation with a 20% threshold.

Given the joint localization threshold for each person, we
compute two sets of evaluation metrics, one adopted from
the multi-target tracking literature [44, 11, 28] to evaluate
multi-person pose tracking, and one which is commonly
used for evaluating multi-person pose estimation [32].
Tracking. To evaluate multi-person pose tracking, we con-
sider each joint trajectory as one individual target,3 and
compute multiple measures. First, the CLEAR MOT met-
rics [4] provide the tracking accuracy (MOTA) and tracking
precision (MOTP). The former is derived from three types
of error ratios: false positives, missed targets, and identity
switches (IDs). These are linearly combined to produce a
normalized accuracy where 100% corresponds to zero er-
rors. MOTP measures how precise each object, or in our
case each body joint, has been localized w.r.t. the ground
truth. Second, we report trajectory-based measures pro-
posed in [26], that count the number of mostly tracked (MT)
and mostly lost (ML) tracks. A track is considered mostly
tracked if it has been recovered in at least 80% of its length,

3Note that only joints of the same type are matched.

and mostly lost if more than 80% are not tracked. For com-
pleteness, we also compute the number of times a ground
truth trajectory is fragmented (FM).
Pose. For measuring frame-wise multi-person pose accu-
racy, we use Mean Average Precision (mAP) as is done in
[32]. The protocol to evaluate multi-person pose estimation
in [32] assumes that the rough scale and location of a group
of persons is known during testing [32], which is not the
case in realistic scenarios, and in particular in videos. We
therefore propose to make no assumptions during testing
and evaluate the predictions without rescaling or shifting
them according to the ground truth.
Occlusion handling. Both of the aforementioned proto-
cols to measure pose estimation and tracking accuracy do
not consider occlusion during evaluation, and penalize if an
occluded target that is annotated in the ground-truth is not
correctly estimated [28, 32]. This, however, discourages
methods that either detect occlusions and do not predict the
occluded joints or approaches that predict the joint position
even for occluded joints. We want to provide a fair com-
parison for both types of occlusion handling. We therefore
extend both measures to incorporate occlusion information
explicitly. To this end, we first assign each person to one
of the ground-truth poses based on PCKh measure as done
in [32]. For each matched person, we consider an occluded
joint correctly estimated either if a) it is predicted at the
correct location despite being occluded, or b) it is not pre-
dicted at all. Otherwise, the prediction is considered as a
false positive.

5. Experiments
In this section we evaluate the proposed method for joint

multi-person pose estimation and tracking on the newly in-
troduced Multi-Person PoseTrack dataset.

5.1. Multi-Person Pose Tracking

The results for multi-person pose tracking (MOT
CLEAR metrics) are reported in Tab. 2. To find the best set-
ting, we first perform a series of experiments, investigating
the influence of temporal connection density, temporal con-
nection length, and inclusion of different constraint types.

We first examine the impact of different joint combina-
tions for temporal connections. Connecting only the Head
Tops (HT) between frames results in a Multi-Object Track-
ing Accuracy (MOTA) of 27.2 with a recall and precision of
57.6% and 66.0%, respectively. Adding Neck and Shoul-
der (HT:N:S) detections for temporal connections improves
the MOTA score to 28.2, while also improving the recall
from 57.6% to 62.7%. Adding more temporal connections
also increases other metrics such as MT, ML, and also re-
sults in a lower number of ID switches (IDs) and fragments
(FM). However, increasing the number of joints for tem-
poral edges even further (HT:N:S:H) results in a slight de-



Method Rcll Prcn MT ML IDs FM MOTA MOTP
↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑

Impact of temporal connection density

HT 57.6 66.0 632 623 674 5080 27.2 56.1
HT:N:S 62.7 64.9 760 510 470 5557 28.2 55.8
HT:N:S:H 63.1 64.5 774 494 478 5564 27.8 55.7
HT:W:A 62.8 64.9 758 526 516 5458 28.2 55.8

Impact of the length of temporal connection (τ )

HT:N:S (τ = 1) 62.7 64.9 760 510 470 5557 28.2 55.8
HT:N:S (τ = 3) 63.0 64.8 775 502 431 5629 28.2 55.7
HT:N:S (τ = 5) 62.8 64.7 763 508 381 5676 28.0 55.7

Impact of the constraints

All 63.0 64.8 775 502 431 5629 28.2 55.7
All \ spat. transitivity 22.2 76.0 115 1521 39 3947 15.1 58.0
All \ temp. transitivity 60.3 65.1 712 544 268 5610 27.7 55.8
All \ spatio-temporal 55.1 64.1 592 628 262 5444 23.9 55.7

Comparison with the Baselines

Ours 63.0 64.8 775 502 431 5629 28.2 55.7
BBox-Tracking [40, 36]

+ LJPA [18] 58.8 64.8 716 646 319 5026 26.6 53.5
+ CPM [42] 60.1 57.7 754 611 347 4969 15.6 53.4

Table 2: Quantitative evaluation of multi-person pose-tracking us-
ing common multi-object tracking metrics. Up and down arrows
indicate whether higher or lower values for each metric are better.
The first three blocks of the table present an ablative study on de-
sign choices w.r.t. joint selection, temporal edges, and constraints.
The bottom part compares our final result with two strong base-
lines described in the text. HT:Head Top, N:Neck, S:Shoulders,
W:Wrists, A:Ankles

crease in performance. This is most likely due to the weaker
DeepMatching correspondences between hip joints, which
are difficult to match. When only the body extremities
(HT:W:A) are used for temporal edges, we obtain a simi-
lar MOTA as for (HT:N:S), but slightly worse other track-
ing measures. Considering the MOTA performance and the
complexity of our graph structure, we use (HT:N:S) as our
default setting.

Instead of considering only neighboring frames for tem-
poral edges, we also evaluate the tracking performance
while introducing longer-range temporal edges of up to 3
and 5 frames. Adding temporal edges between detections
that are at most three frames (τ = 3) apart improves the
performance only slightly, whereas increasing the distance
even further (τ = 5) worsens the performance. For the rest
of our experiments we therefore set τ = 3.

To evaluate the proposed optimization objective (3) for
joint multi-person pose estimation and tracking in more de-
tail, we have quantified the impact of various kinds of con-
straints (10)-(15) enforced during the optimization. To this
end, we remove one type of constraints at a time and solve
the optimization problem. As shown in Tab. 2, all types of
constraints are important to achieve best performance, with
the spatial transitivity constraints playing the most crucial
role. This is expected since these constraints ensure that
we obtain valid poses without multiple joint types assigned
to one person. Temporal transitivity constraints and spatio-

Method Head Sho Elb Wri Hip Knee Ank mAP

Impact of the temporal connection density

HT 52.5 47.0 37.6 28.2 19.7 27.8 27.4 34.3
HT:N:S 56.1 51.3 42.1 31.2 22.0 31.6 31.3 37.9
HT:N:S:H 56.3 51.5 42.2 31.4 21.7 31.6 32.0 38.1
HT:W:A 56.0 51.2 42.2 31.6 21.6 31.2 31.7 37.9

Impact of the length of temporal connection (τ )

HT:N:S (τ = 1) 56.1 51.3 42.1 31.2 22.0 31.6 31.3 37.9
HT:N:S (τ = 3) 56.5 51.6 42.3 31.4 22.0 31.9 31.6 38.2
HT:N:S (τ = 5) 56.2 51.3 41.8 31.1 22.0 31.4 31.5 37.9

Impact of the constraints

All 56.5 51.6 42.3 31.4 22.0 31.9 31.6 38.2
All \ spat. transitivity 7.8 10.1 7.2 4.6 2.7 4.9 5.9 6.2
All \ temp. transitivity 50.5 46.8 37.5 27.6 20.3 30.1 28.7 34.5
All \ spatio-temporal 42.3 40.8 32.8 24.3 17.0 25.3 22.4 29.3

Comparison with the state-of-the-art

Ours 56.5 51.6 42.3 31.4 22.0 31.9 31.6 38.2
BBox-Detection [36]

+ LJPA [18] 50.5 49.3 38.3 33.0 21.7 29.6 29.2 35.9
+ CPM [42] 48.8 47.5 35.8 29.2 20.7 27.1 22.4 33.1

DeeperCut [17] 56.2 52.4 40.1 30.0 22.8 30.5 30.8 37.5

Table 3: Quantitative evaluation of multi-person pose estimation
(mAP). HT:Head Top, N:Neck, S:Shoulders, W:Wrists, A:Ankles

temporal also turn out to be important to obtain good re-
sults. Removing either of the two significantly decreases
the recall, resulting in a drop in MOTA.

Since we are the first to report results on the Multi-
Person PoseTrack dataset, we also develop two baseline
methods by using the existing approaches. For this, we rely
on a state-of-the-art method for multi-person pose estima-
tion in images [18]. The approach uses person detector [36]
to first obtain person bounding box hypotheses, and then es-
timates the pose for each person independently. We use the
source code kindly provided by the authors, and extend it to
videos as follows. We first generate person bounding boxes
for all frames in the video using a state-of-the-art person
detector (Faster R-CNN [36]), and perform person track-
ing using a state-of-the-art person tracker [40] and train
it on the training set of Multi-Person PoseTrack Dataset.
We also discard all tracks that are shorter than 7 frames.
The final pose estimates are obtained by using the Local
Joint-to-Person Association (LJPA) approach proposed by
[18] for each person track. We also report results when
Convolutional Pose Machines (CPM) [42] are used instead.
Since CPM does not account for joint occlusion and trunca-
tion, the MOTA score is significantly lower than for LJPA.
LJPA [18] improves the performance, but remains inferior
w.r.t. to most measures compared to our proposed method.
In particular, our method achieves the highest MOTA and
MOTP scores. The former is due to a significantly higher
recall, while the latter is a result of a more precise part lo-
calization. Interestingly, the person bounding-box tracking
based baselines achieve a lower number of ID switches. We
believe that this is primarily due to the powerful multi-target
tracking approach [40], which can handle person identities
more robustly.



27 27.5 28 28.5

MOTA

34

35

36

37

38

39

m
A
P

HT

HT:N:S

HT:N:S:H

HT:W:A

28 28.1 28.2

MOTA

37.9

38

38.1

38.2

m
A
P

τ=1

τ=3

τ=5

15 20 25 30

MOTA

5

10

15

20

25

30

35

40

m
A
P

All

All \ spat. transitivity

All \ temp. transitivity

All \ spatio-temporal

Figure 4: Left Impact of the the temporal edge density. Middle Impact of the length of temporal edges. Right Impact of different constraint
types.

5.2. Frame-wise Multi-Person Pose Estimation

The results for frame-wise multi-person pose estimation
(mAP) are summarized in Table 3. Similar to the evaluation
for pose tracking, we evaluate the impact of spatio-temporal
connection density, length of temporal connections and the
influence of different constraint types. Having connections
only between Head Top (HT) detections results in a mAP of
34.3%. As for pose tracking, introducing temporal connec-
tions for Neck and Shoulders (HT:N:S) results in a higher
accuracy and improves the mAP from 34.3% to 37.9%. The
mAP elevates slightly more when we also incorporate con-
nections for hip joints (HT:N:S:H). This is in contrast to
pose tracking where MOTA dropped slightly when we also
use connections for hip joints. As before, inclusion of edges
between all detections that are in the range of 3 frames im-
proves the performance, while increasing the distance fur-
ther (τ = 5) starts to deteriorate the performance. A similar
trend can also been seen for the impact of different types of
constraints. The eviction of spatial transitivity constraints
results in a drastic decrease in pose estimation accuracy.
Without temporal transitivity constraints or spatio-temporal
constraints the pose estimation accuracy drops by more than
3% and 8%, respectively. This once again indicates that all
types of constraints are essential to obtain better pose esti-
mation and tracking performance.

We also compare the proposed method with the state-
of-the art approaches for multi-person pose estimation in
images. Similar to [18], we use Faster R-CNN [36] as
person detector, and use the provided codes for LJPA [18]
and CPM [42] to process each bounding box detection in-
dependently. We can see that person bounding box based
approaches significantly underperform as compared to the
proposed method. We also compare with the state-of-the-
art method DeeperCut [17]. The approach, however, re-
quires the rough scale of persons during testing. For this,
we use the person detections obtained from [36] to compute
the scale using the median scale of all detected persons.

Our approach achieves a better performance than all
other methods. Moreover, all these approaches require an
additional person detector either to get the bounding boxes

[18, 42], or the rough scale of the persons [17]. Our ap-
proach on the other hand does not require a separate per-
son detector, and we perform joint detection across different
scales, while also solving the person association problem
across frames.

We also visualize how multi-person pose estimation ac-
curacy (mAP) relates with the multi-person tracking accu-
racy (MOTA) in Fig. 4. Finally, Tab. 4 provides mean and
median runtimes for constructing and solving the spatio-
temporal graph along with the graph size for k=31 frames
over all test videos.

Runtime
(sec./frame)

# of nodes # of spatial
edges

# of temp.
edges

Mean 14.7 2084 65535 12903
Median 4.2 1907 58164 8540
Table 4: Runtime and size of the spatio-temporal graph (τ = 3,
HT:N:S, k=31), measured on a single 3.3GHz Intel CPU.

6. Conclusion
In this paper we have presented a novel approach to

simultaneously perform multi-person pose estimation and
tracking. We demonstrate that the problem can be formu-
lated as a spatio-temporal graph which can be efficiently
optimized using integer linear programming. We have
also presented a challenging and diverse annotated dataset
with a comprehensive evaluation protocol to analyze the
algorithms for multi-person pose estimation and tracking.
Following the evaluation protocol, the proposed method
does not make any assumptions on the number, size, or lo-
cation of the persons, and can perform pose estimation and
tracking in completely unconstrained videos. Moreover,
the method is able to perform pose estimation and tracking
under sever occlusion and truncations. Experimental re-
sults on the proposed dataset demonstrate that our method
outperforms other baseline methods.
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