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Introduction

» One-to-One Graph Matching in Computer Vision
Action Recognition
Feature Point Matching
Multi-Target Tracking

Person Re-ldentification




[atroduction

» Most existing works focus on
Feature and/or metric learning [Zhao et al., CVPR 2014, Liu et al., ECCV 2010]
Developing better solvers [Cho et al., ECCV 2010, Zhou & De la Torre, CVPR 2013]

» The optimal solution does not necessarily yield the correct matching assignment

» To improving the matching results, we propose
to consider more feasible solutions

a principle approach to combine the solutions




One-t0-One Graph Matching

» Formulating it as a constrained binary program




One-t0-One Graph Matching

» Formulating it as a constrained binary program




One-t0-One Graph Matching

» Formulating it as a constrained binary program

- T
— (40 .1 J N Mx(N+1
X—(xl,xl,...,x,...,xM) c BMx(N+1)




One-t0-One Graph Matching

» Formulating it as a constrained binary program

X* = argmin f(X)

Xex
Or
X* = argmax p(X)
Xex
where

x = {x=(), 1 x/=101,

V), xijS 1,

Vi), xij= 1}




One-t0-One Graph Matching

» Formulating it as a constrained binary program

X* = argmin f(X)

Xex
Or
X* = argmax p(X)
Xex
where

x = {x=(), 1 x/=101,

vji: Y xl <1,

Vi), xij= 1}




One-t0-One Graph Matching

» Formulating it as a constrained binary program

X* = argmin f(X)

Xex
Or
X* = argmax p(X)
Xex
where

x = {x=(), 1 x/=101,
V), xij <1,

Vi: ) xij= 1}




One-t0-One Graph Matching

» Formulating it as a constrained binary program

X* = argmin f(X)

X €

Or

X* =arg p(X)
X €

where




One-t0-One Graph Matching

» Formulating it as a constrained binary program

® X" = argmin f(X)
Xex
Or
X" = argmax p(X)
Xex
where

x = {x=(), 1 x/=101,
V), xij <1,

Vi), xij= 1}




One-t0-One Graph Matching

» Examples of joint matching distribution p(X) and cost f(X) in different applications

Multi-target tracking [Zheng et al., CVPR 2008] and person re-identification [Das et al., ECCV
2014 ]

)
f(X) = CTX orequivalently p(X) «[Ip(x]) "
Feature point matching [Leordeanu et al., 1JCV 2011]

fO0) =XTQX

Stereo matching [Meltzer et al., ICCV 2005] and iterative closest point [Zheng, IJCV 1994]

higher-order constraints in addition to one-to-one constraints




Marginalization VS MAP Estimates

» In general, globally optimal solution may or may not be easily achieved.

X* = argmin f(X) X* = argmax p(X)
Xex Xex
» Even the optimal solution does not necessarily yield the correct matching
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Marginalization VS MAP Estimates

Motivation to use marginalization

v Encoding the entire distribution to untangle potential ambiguities
x  MAP only considers one single value of that distribution

v Improving matching ranking due to averaging / smoothing property

Exact marginalization is NP-hard

% Requiring all feasible permutations to built the joint distribution

Solution

v Approximation using m-Best solutions




Marginalization Using m-Best Solutions

Marginalization by considering a fraction of the matching space
» Using m-highest joint probabilities p(X)/ m-lowest values for f(X)
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Marginalization by considering a fraction of the matching space
» Using m-highest joint probabilities p(X)/ m-lowest values for f(X)
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Marginalization by considering a fraction of the matching space
» Using m-highest joint probabilities p(X)/ m-lowest values for f(X)
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» Approximation error bound decreases exponentially by increasing number of solutions
[Rezatofighi et al. , ICCV 2015]
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Computing the m-Best Solutions

Naive exclusion strategy

v" General approach X, = argmin f(X)
% Impractical for large values of m AX =B
Ax <B

Solve A2 .x]

Binary Tree Partitioning

Partitioning the space into a set of disjoint
subspaces [Rezatofighi et al., ICCV 2015 ]

v Efficient approach
% Not a good strategy for weak solvers
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Experimental Results

Person Re-ldentification

FT [Dasetal., ECCV 2014] AvgF [Paisitkriangkrai et al., CVPR 2015 ]

Dataset Method Recogmtlon rate % Time
(Size) (m=100) Rank-1 | Rank-2 (Sec.)

RAID FT 74.0 82.0 96.0
(20x20) mbst-FT 85.0 99.0 100.0 1.6
iILIDS AvgF 51.9 60.7 72.4
(59x59) mbst-AvgF 54.7 63.6 75.4 15.4
VIPeR AvgF 44.9 58.3 76.3

(316x316)  mbst-AvgF 50.5 63.0 78.0 201.9




Experimental Results

Person Re-ldentification
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Experimental Results

Feature Matching

X* = argmax XTKX
XeX

Matching PASCAL VOC dataset
[Leordeanu et al., IJCV 2011]
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Experimental Results

IPFP(n=1) =——BP(m=1)
BP solver [Zhang et al., CVPR

Car
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Experimental Results
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Experimental Results
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Discussion & Conclusion

Limitations
» One-to-One constraint is no longer guaranteed by marginalization

» Requires computational overhead to calculate m solutions

Conclusion
» Graph matching by approximated marginals using m-best solutions instead of MAP
» A generic approach applicable to similar problems

» Marginalization improves matching accuracy and ranking

Take-home message

» Do not rely on a single solution, explore more solutions

Future work

» Exploring further applications with arbitrary cost functions
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