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Introduction

 One-to-One Graph Matching in Computer Vision

• Action Recognition  

• Feature Point Matching

• Multi-Target Tracking

• Person Re-Identification

2

⋮
⋮



Introduction

 Most existing works focus on

• Feature and/or metric learning [Zhao et al., CVPR 2014, Liu et al., ECCV 2010] 

• Developing better solvers [Cho et al., ECCV 2010, Zhou & De la Torre, CVPR 2013]

 The optimal solution does not necessarily yield the correct matching assignment

 To improving the matching results, we propose 

• to consider more feasible solutions

• a principle approach to combine the solutions
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One-to-One Graph Matching

 Formulating it as a constrained binary program
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One-to-One Graph Matching

 Examples of joint matching distribution 𝑝 𝑋 and cost 𝑓 𝑋 in different applications

• Multi-target tracking [Zheng et al., CVPR 2008] and person re-identification [Das et al., ECCV 

2014 ]

• Feature point matching [Leordeanu et al., IJCV 2011]

• Stereo matching [Meltzer et al., ICCV 2005] and iterative closest point [Zheng, IJCV 1994] 

higher-order constraints in addition to one-to-one constraints
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Marginalization VS MAP Estimates

 In general, globally optimal solution may or may not be easily achieved.

 Even the optimal solution does not necessarily yield the correct matching

assignment
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Marginalization VS MAP Estimates

Motivation to use marginalization

 Encoding the entire distribution to untangle potential ambiguities

 MAP only considers one single value of that distribution 

 Improving matching ranking due to averaging / smoothing property

Exact marginalization is NP-hard

 Requiring all feasible permutations to built the joint distribution

Solution

 Approximation using m-Best solutions
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Marginalization Using m-Best Solutions

Marginalization by considering a fraction of the matching space

 Using m-highest joint probabilities 𝑝 𝑋 / m-lowest values for 𝑓 𝑋
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Marginalization Using m-Best Solutions

Marginalization by considering a fraction of the matching space

 Using m-highest joint probabilities 𝑝 𝑋 / m-lowest values for 𝑓 𝑋

 Approximation error bound decreases exponentially by increasing number of solutions 
[Rezatofighi et al. , ICCV 2015]
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Computing the m-Best Solutions

Naïve exclusion strategy
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Computing the m-Best Solutions

Naïve exclusion strategy
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Computing the m-Best Solutions

Naïve exclusion strategy

Binary Tree Partitioning
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Partitioning the space into a set of disjoint 

subspaces [Rezatofighi et al., ICCV 2015 ]

 General approach

 Impractical for large values of m



Experimental Results

Person Re-Identification
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Experimental Results

Person Re-Identification

 Ranking is improved
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Experimental Results

Person Re-Identification
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FT [Das et al., ECCV 2014]   AvgF [Paisitkriangkrai et al., CVPR 2015 ]

Dataset

(Size)

Method

(m=100)

Time

(Sec.)

RAiD

(20×20)

FT

mbst-FT

74.0

85.0

82.0

99.0

96.0

100.0 1.6

iLIDS

(59×59)

AvgF

mbst-AvgF

51.9

54.7

60.7

63.6

72.4

75.4 15.4

VIPeR

(316×316)

AvgF

mbst-AvgF

44.9

50.5

58.3

63.0

76.3

78.0 201.9
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Experimental Results

Feature Matching
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BP solver [Zhang et al., CVPR 2016]

IPFP Solver [Leordeanu et al., IJCV 2011]
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Discussion & Conclusion

Limitations

 One-to-One constraint is no longer guaranteed by marginalization

 Requires computational overhead to calculate m solutions

Conclusion

 Graph matching by approximated marginals using m-best solutions instead of MAP 

 A generic approach applicable to similar problems

 Marginalization improves matching accuracy and ranking

Take-home message 

 Do not rely on a single solution, explore more solutions

Future work

 Exploring further applications with arbitrary cost functions
44



Thank you 

45

Visit our poster
Email: hamid.rezatofighi@adelaide.edu.au

Code will be available


