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Introduction

 One-to-One Graph Matching in Computer Vision

• Action Recognition  

• Feature Point Matching

• Multi-Target Tracking

• Person Re-Identification
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Introduction

 Most existing works focus on

• Feature and/or metric learning [Zhao et al., CVPR 2014, Liu et al., ECCV 2010] 

• Developing better solvers [Cho et al., ECCV 2010, Zhou & De la Torre, CVPR 2013]

 The optimal solution does not necessarily yield the correct matching assignment

 To improving the matching results, we propose 

• to consider more feasible solutions

• a principle approach to combine the solutions
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One-to-One Graph Matching

 Formulating it as a constrained binary program
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One-to-One Graph Matching

 Examples of joint matching distribution 𝑝 𝑋 and cost 𝑓 𝑋 in different applications

• Multi-target tracking [Zheng et al., CVPR 2008] and person re-identification [Das et al., ECCV 

2014 ]

• Feature point matching [Leordeanu et al., IJCV 2011]

• Stereo matching [Meltzer et al., ICCV 2005] and iterative closest point [Zheng, IJCV 1994] 

higher-order constraints in addition to one-to-one constraints
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Marginalization VS MAP Estimates

 In general, globally optimal solution may or may not be easily achieved.

 Even the optimal solution does not necessarily yield the correct matching

assignment
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• Visual similarity

• Other ambiguities in the matching space
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Marginalization VS MAP Estimates

Motivation to use marginalization

 Encoding the entire distribution to untangle potential ambiguities

 MAP only considers one single value of that distribution 

 Improving matching ranking due to averaging / smoothing property

Exact marginalization is NP-hard

 Requiring all feasible permutations to built the joint distribution

Solution

 Approximation using m-Best solutions
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Marginalization Using m-Best Solutions

Marginalization by considering a fraction of the matching space

 Using m-highest joint probabilities 𝑝 𝑋 / m-lowest values for 𝑓 𝑋
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Marginalization Using m-Best Solutions

Marginalization by considering a fraction of the matching space

 Using m-highest joint probabilities 𝑝 𝑋 / m-lowest values for 𝑓 𝑋

 Approximation error bound decreases exponentially by increasing number of solutions 
[Rezatofighi et al. , ICCV 2015]
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Computing the m-Best Solutions

Naïve exclusion strategy
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Computing the m-Best Solutions

Naïve exclusion strategy

30

𝑋𝑘
∗ = argmin 𝑓 𝑋

𝐴𝑋 ≤ 𝐵
ሖ𝐴𝑋 ≤ ሖ𝐵

 General approach

 Impractical for large values of m



Computing the m-Best Solutions

Naïve exclusion strategy

Binary Tree Partitioning
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 Efficient approach

 Not a good strategy for weak solvers

Partitioning the space into a set of disjoint 

subspaces [Rezatofighi et al., ICCV 2015 ]

 General approach

 Impractical for large values of m



Experimental Results

Person Re-Identification
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Experimental Results

Person Re-Identification

 Ranking is improved
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Experimental Results

Person Re-Identification
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FT [Das et al., ECCV 2014]   AvgF [Paisitkriangkrai et al., CVPR 2015 ]

Dataset

(Size)

Method

(m=100)

Time

(Sec.)

RAiD

(20×20)

FT

mbst-FT

74.0

85.0

82.0

99.0

96.0

100.0 1.6

iLIDS

(59×59)

AvgF

mbst-AvgF

51.9

54.7

60.7

63.6

72.4

75.4 15.4

VIPeR

(316×316)

AvgF

mbst-AvgF

44.9

50.5

58.3

63.0

76.3

78.0 201.9



Experimental Results

Person Re-Identification
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Experimental Results

Feature Matching
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Matching PASCAL VOC dataset 

[Leordeanu et al., IJCV 2011]
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BP solver [Zhang et al., CVPR 2016]

IPFP Solver [Leordeanu et al., IJCV 2011]
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Feature Matching
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Discussion & Conclusion

Limitations

 One-to-One constraint is no longer guaranteed by marginalization

 Requires computational overhead to calculate m solutions

Conclusion

 Graph matching by approximated marginals using m-best solutions instead of MAP 

 A generic approach applicable to similar problems

 Marginalization improves matching accuracy and ranking

Take-home message 

 Do not rely on a single solution, explore more solutions

Future work

 Exploring further applications with arbitrary cost functions
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Thank you 
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Visit our poster
Email: hamid.rezatofighi@adelaide.edu.au

Code will be available


