

Joint Probabilistic Matching Using *m*-Best Solutions

S. Hamid Rezatofighi

Anton Milan Zhen Zhang Antony Dick Ian Reid Qinfeng Shi

Australian Centre for Visual Technologies Innovation and education in visual information processing.

WELCOME TO Fabulous

CVPR 2016

LAS VEGAS

Introduction

- One-to-One Graph Matching in Computer Vision
 - Action Recognition
 - Feature Point Matching
 - Multi-Target Tracking
 - Person Re-Identification

Introduction

- Most existing works focus on
 - Feature and/or metric learning [Zhao et al., CVPR 2014, Liu et al., ECCV 2010]
 - Developing better solvers [Cho et al., ECCV 2010, Zhou & De la Torre, CVPR 2013]
- The optimal solution does not necessarily yield the correct matching assignment
- ▶ To improving the matching results, we propose
 - to consider more feasible solutions
 - a principle approach to combine the solutions

► Formulating it as a constrained binary program

► Formulating it as a constrained binary program

► Formulating it as a constrained binary program

$$\begin{aligned} x_i^j &= \{0,1\} \\ X &= \left(x_1^0, x_1^1, \dots, x_i^j, \dots, x_M^N\right)^T \subseteq \mathbb{B}^{M \times (N+1)} \end{aligned}$$

► Formulating it as a constrained binary program

 $X^* = \underset{X \in \mathcal{X}}{\operatorname{argmin}} f(X)$ $X \in \mathcal{X}$ Or $X^* = \underset{X \in \mathcal{X}}{\operatorname{argmax}} p(X)$ $X \in \mathcal{X}$

where

$$\mathcal{X} = \left\{ X = \left(x_i^J \right)_{\forall i,j} | x_i^J = \{0,1\}, \\ \forall j \colon \sum x_i^j \leq 1, \\ \forall i \colon \sum x_i^j = 1 \right\}$$

7

▶ Formulating it as a constrained binary program

 $X^* = \underset{X \in \mathcal{X}}{\operatorname{argmin}} f(X)$ Or $X^* = \underset{X \in \mathcal{X}}{\operatorname{argmax}} p(X)$

$$\mathcal{X} = \left\{ X = \left(x_i^J \right)_{\forall i,j} | x_i^J = \{0,1\}, \\ \forall j \colon \sum x_i^j \leq 1, \\ \forall i \colon \sum x_i^j = 1 \right\}$$

► Formulating it as a constrained binary program

 $X^* = \underset{X \in \mathcal{X}}{\operatorname{argmin}} f(X)$ $X \in \mathcal{X}$ Or $X^* = \underset{X \in \mathcal{X}}{\operatorname{argmax}} p(X)$ $X \in \mathcal{X}$

$$\mathcal{X} = \left\{ X = \left(x_i^J \right)_{\forall i,j} | x_i^J = \{0,1\}, \\ \forall j \colon \sum x_i^j \leq 1, \\ \forall i \colon \sum x_i^j = 1 \right\}$$

▶ Formulating it as a constrained binary program

$$\mathcal{X} = \left\{ X = \left(x_i^j \right)_{\forall i,j} | x_i^j = \{0,1\}, \\ \forall j \colon \sum x_i^j \leq 1, \\ \forall i \colon \sum x_i^j = 1 \right\}$$

► Formulating it as a constrained binary program

 $X^* = \underset{X \in \mathcal{X}}{\operatorname{argmin}} f(X)$ $X \in \mathcal{X}$ Or $X^* = \underset{X \in \mathcal{X}}{\operatorname{argmax}} p(X)$ $X \in \mathcal{X}$

$$\mathcal{X} = \left\{ X = \left(x_i^J \right)_{\forall i,j} | x_i^J = \{0,1\}, \\ \forall j \colon \sum x_i^j \leq 1, \\ \forall i \colon \sum x_i^j = 1 \right\}$$

Examples of joint matching distribution p(X) and cost f(X) in different applications

• Multi-target tracking [Zheng *et al.*, CVPR 2008] and person re-identification [Das *et al.*, ECCV 2014]

 $f(X) = C^T X$ or equivalently $p(X) \propto \prod p(x_i^j)^{x_i^j}$

• Feature point matching [Leordeanu *et al.*, IJCV 2011]

 $f(X) = X^T Q X$

• Stereo matching [Meltzer *et al.*, ICCV 2005] and iterative closest point [Zheng, IJCV 1994] higher-order constraints in addition to one-to-one constraints

- ▶ In general, globally optimal solution may or may not be easily achieved.
- X* = argmin f(X) X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X ∈ X
 X

▶ In general, globally optimal solution may or may not be easily achieved.

 $\begin{array}{ll} X^* = \operatorname{argmin} f(X) & X^* = \operatorname{argmax} p(X) \\ X \in \mathcal{X} & X \in \mathcal{X} \end{array}$

- Even the optimal solution does not necessarily yield the correct matching assignment
 - Visual similarity
 - Other ambiguities in the matching space

▶ In general, globally optimal solution may or may not be easily achieved.

$$X^* = \operatorname{argmin} f(X) \qquad X^* = \operatorname{argmax} p(X)$$
$$X \in \mathcal{X} \qquad X \in \mathcal{X}$$

- Even the optimal solution does not necessarily yield the correct matching assignment
 - Visual similarity
 - Other ambiguities in the matching space

Motivation to use marginalization

- Encoding the entire distribution to untangle potential ambiguities
 - ★ MAP only considers one single value of that distribution
- Improving matching ranking due to averaging / smoothing property

Exact marginalization is NP-hard

★ Requiring all feasible permutations to built the joint distribution

Solution

 \checkmark Approximation using *m*-Best solutions

Marginalization by considering a fraction of the matching space

Marginalization by considering a fraction of the matching space

Marginalization by considering a fraction of the matching space

Marginalization by considering a fraction of the matching space

Marginalization by considering a fraction of the matching space

Marginalization by considering a fraction of the matching space

Marginalization by considering a fraction of the matching space

Using *m*-highest joint probabilities p(X)/m-lowest values for f(X)

Approximation error bound decreases exponentially by increasing number of solutions [Rezatofighi *et al.*, ICCV 2015]

Naïve exclusion strategy

 $X_1^* = \operatorname*{argmin}_{AX} f(X)$ $AX \le B$

Naïve exclusion strategy

 $\begin{aligned} X_2^* &= \operatorname*{argmin} f(X) \\ AX &\leq B \\ \langle X, X_1^* \rangle &\leq \|X_1^*\|_1 - 1 \end{aligned}$

Naïve exclusion strategy

 $X_3^* = \operatorname{argmin} f(X)$ $AX \le B$ $\langle X, X_1^* \rangle \le \|X_1^*\|_1 - 1$ $\langle X, X_2^* \rangle \le \|X_2^*\|_1 - 1$

Naïve exclusion strategy

 $\begin{aligned} X_k^* &= \operatorname*{argmin} f(X) \\ AX &\leq B \\ \langle X, X_1^* \rangle &\leq \|X_1^*\|_1 - 1 \\ \langle X, X_2^* \rangle &\leq \|X_2^*\|_1 - 1 \\ \vdots \\ \langle X, X_{k-1}^* \rangle &\leq \|X_{k-1}^*\|_1 - 1 \end{aligned}$

Naïve exclusion strategy

- ✓ General approach
- ***** Impractical for large values of m

 $X_k^* = \operatorname{argmin} f(X)$ $AX \le B$ $AX \le B$

Naïve exclusion strategy

General approach
Impractical for large values of *m*

 $X_k^* = \operatorname*{argmin}_k f(X)$ $AX \le B$ $AX \le B$

Binary Tree Partitioning

Partitioning the space into a set of disjoint subspaces [Rezatofighi *et al.*, ICCV 2015]

- ✓ Efficient approach
- ★ Not a good strategy for weak solvers

Person Re-Identification

Person Re-Identification

Person Re-Identification

✓ Ranking is improved $X^* = \operatorname{argmin} C^T X$ $X \in \mathcal{X}$

35

Person Re-Identification

Dataset (Size)	Method (<i>m</i> =100)	Recognition rate %			Time
		Rank-1	Rank-2	Rank-5	(Sec.)
RAiD	FT	74.0	82.0	96.0	1.6
(20×20)	mbst-FT	85.0	99.0	100.0	
iLIDS	AvgF	51.9	60.7	72.4	15.4
(59×59)	mbst-AvgF	54.7	63.6	75.4	
VIPeR	AvgF	44.9	58.3	76.3	201.9
(316×316)	mbst-AvgF	50.5	63.0	78.0	

- ▼ - mbst-AvgF

-AvgF CMC^{top}

-FPNN

15

-KISSME

20

Person Re-Identification

Feature Matching

 $\begin{array}{l} X^* = \operatorname*{argmax} X^T K X \\ X \in \mathcal{X} \end{array}$

Matching PASCAL VOC dataset [Leordeanu *et al.*, IJCV 2011]

Feature Matching

 $\begin{array}{l} X^* = \operatorname*{argmax} X^T K X \\ X \in \mathcal{X} \end{array}$

Matching PASCAL VOC dataset [Leordeanu *et al.*, IJCV 2011]

Feature Matching $X^* = \operatorname{argmax} X^T K X$ $X \in \mathcal{X}$

Matching PASCAL VOC dataset [Leordeanu *et al.*, IJCV 2011]

40

Feature Matching

 $X^* = \operatorname{argmax} X^T K X$ $X \in \mathcal{X}$

Matching PASCAL VOC dataset [Leordeanu *et al.*, IJCV 2011]

Feature Matching

 $X^* = \operatorname{argmax} X^T K X$ $X \in \mathcal{X}$

Matching PASCAL VOC dataset [Leordeanu *et al.*, IJCV 2011]

Feature Matching

 $X^* = \operatorname{argmax} X^T K X$ $X \in \mathcal{X}$

Matching PASCAL VOC dataset [Leordeanu *et al.*, IJCV 2011]

Discussion & Conclusion

Limitations

- One-to-One constraint is no longer guaranteed by marginalization
- Requires computational overhead to calculate *m* solutions

Conclusion

- Graph matching by approximated marginals using *m*-best solutions instead of MAP
- A generic approach applicable to similar problems
- Marginalization improves matching accuracy and ranking

Take-home message

Do not rely on a single solution, explore more solutions

Future work

Exploring further applications with arbitrary cost functions

Thank you

Visit our poster

Email: hamid.rezatofighi@adelaide.edu.au

Code will be available

Australian Centre for Visual Technologies Innovation and education in visual information processing.