Motivation Er Contribution
Graph matching is typically approached by solving a MAP problem，e．g．maximizing a joint matching score．
We argue that
－Globally optimal solution may or may not be easily achieved，
－Even the optimal solution does not necessarily yield the cor－ rect matching assignment

To improve matching results，we propose to use
Approx．marginals instead of MAP： m－best soutions instead of a single solution．

One－to－One Graph Matching
Bipartite，K－Partite and Multipartite Graphs

A constrained binary program
Maximizing（or minimising）a joint matching probability $p(\cdot)$ （or objective cost $f(\cdot)$ ）

$$
\begin{align*}
& X^{*}=\underset{X \in \mathcal{X}}{\operatorname{argmax}} \quad p(X), \\
& \underset{X \in \mathcal{X}}{\operatorname{argmin}} f(X), \tag{1}
\end{align*}
$$

where \mathcal{X} is the one－to－one matching space $\mathcal{X}=\left\{X=\left(x_{i}^{j}\right)_{\forall i, j} \mid x_{i}^{j} \in\{0,1\}, \forall j: \sum_{i} x_{i}^{j} \leqslant 1, \forall i: \sum_{i} x_{i}^{j}=1\right\}$

A linear inequality constraint $A X \leqslant B$

Marginalization vs．MAP

MAP estimate ingnores underlying distribution and picks only one solution．

Marginalization，a safer choice
－Encodes the entire distribution to untangle potential ambi－ guities，
Improves matching ranking due to averaging／smoothing property

Exact marginalization is NP－hard：
It requires all feasible solutions to build the distribution．
Approximation using m－best solutions

Computing m－Best Solutions
Naive exclusion strategy
－General approach，
$X_{m}^{*}=\underset{\operatorname{argmin}}{ } f(X)$ $\underset{A X \leqslant B}{\operatorname{argmin}}$ $A x \leqslant B$
$A X \leqslant B$
Binary tree partitioning［5］
Partition the space into a set of disjoint subspaces
－Efficient approach，
Not a good strategy for weak solvers

Experimental Results
Applications with linear objectives $X^{*}=\underset{X \in \mathcal{X}}{\operatorname{argmin}} C^{\top} X$
Person Re－Identification

Sequential Re－Identification

Experimental Results Application with a quadratic objective $X^{*}=\underset{X \in \mathcal{X}}{\operatorname{argmax}} X^{\top} K X$

We used two different solvers（IPFP［3］and BP［6）for this application．

Discussion

－No apparent correlation between similarity of solutions and their contribution toward accuracy

References

K Reychouldury Conssele tor

