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Motivation and Overview

Accurate multi-target tracking requires that
• two simultaneous detections cannot be caused by the

same target, and
• two trajectories have no spatio-temporal overlap.
Dealing with both requirements is challenging.

Previous work handled exclusion either only at the detec-
tion level, e.g., [3] or only at the trajectory level, e.g., [2].

We introduce simultaneous exclusion handling for both:
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Our Contributions

•Exclusion modeling at detection level
•Exclusion modeling at trajectory level
•Novel co-occurrence label cost
•α-expansion-based energy minimization algorithm
•Statistics-based design of energy components

Discrete-Continuous Energy with Exclusion

Discrete-continuous formulation (cf. [1]):

(per-trajectory cost) (trajectory co-occurrence cost)
label cost pairwise label cost

Labeling
Trajectories

Detection-Level Exclusion

Goal: Enforce unique IDs for all detections in one frame.

Temporal smoothing only [1] Smoothing and exclusion

t

Apply cost ψX(fd, fd′) =

{
ψX, fd = fd′

0, otherwise

to all edges between simultaneous detector responses
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allow for occasional double detection
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Trajectory-Level Exclusion

Goal: Suppress solutions with incompatible trajectories.
   single

label cost

pairwise
label cost
pairwise
label cost

(per trajectory cost)

(traj. co-occurrence cost)

expansion on   :

A co-occurrence term penalizes a labeling f with
overlapping trajectories:

hX
f (α, β) =

{
ζ(α, β), ∃d, d′ : fd = α ∧ fd′ = β

0, otherwise.
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Optimization

•Discrete part has non-submodular, global terms.
•Continuous part is non-convex.

Alternate between both energy parts:

Discrete Continuous
α-expansion augmented

with greedy label removal.
Gradient-based

optimization.

Statistical Analysis

Goal: Derive functional form of energy from real data.
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Experiments

•Public, challenging datasets: PETS’09, TUD and ETH.
•Publicly available ground truth, detections and

evaluation script [1, 3].

Qualitative results

Quantitative evaluation

LOO cross-validation results on six sequences

Method MOTA MOTP MT ML FM ID
DP [4] 37.4% 64.8% 7 17 104 114
DCO [1] 42.2% 64.1% 11 12 48 65
statistics 45.4% 60.8% 11 12 41 55
det. exclusion 46.7% 63.0% 11 12 38 48
traj. exclusion 46.6% 62.7% 10 12 49 69
combined 51.5% 64.4% 11 13 43 54

Comparison to other methods

Method Recall Prcsn MT ML FM ID
DP [4] 67.4% 91.4% 50.2% 9.9% 143 4
PIRMPT [5] 76.8% 86.6% 58.4% 8.0% 23 11
Online CRF [3] 79.0% 90.4% 68.0% 7.2% 19 11
Our method∗ 77.3% 87.2% 66.4% 8.2% 69 57

∗Augmented with a simple tracklet linking scheme.

Summary

We incorporated exclusion modeling into a
discrete-continuous CRF
• at the detection level using non-submodular constraints,
• at the trajectory level using a co-occurrence label cost.
Moreover, we proposed an expansion move-based
optimization scheme and presented a strategy to derive
individual energy components from a statistical analysis of
ground-truth annotations.
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