

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation and Overview

Accurate multi-target tracking requires that

- two simultaneous detections cannot be caused by the same target, and
- two trajectories have no spatio-temporal overlap.

Dealing with both requirements is challenging.

Previous work handled exclusion either only at the detection level, *e.g.*, [3] or only at the trajectory level, *e.g.*, [2].

We introduce *simultaneous exclusion handling* for both:

Detection Level

Trajectory Level

Our Contributions

- Exclusion modeling at detection level
- Exclusion modeling at trajectory level
- Novel co-occurrence label cost
- α -expansion-based energy minimization algorithm
- Statistics-based design of energy components

Discrete-Continuous Energy with Exclusion

Discrete-continuous formulation (*cf.* [1]):

Acknowledgements: We would like to thank B. Andres, T. Beier and J. Kappes for releasing OpenGM, as well as for helpful discussions. We also thank T. Pham for pointing out some implementation issues.

- [3] B. Yang and R. Nevatia. An online learned CRF model for
- multi-target tracking. In CVPR 2012. [4] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Globally-optimal greedy algorithms for tracking a variable number of objects. In CVPR 2011.
- [5] C.-H. Kuo and R. Nevatia. How does person identity recognition help multi-person tracking? In CVPR 2011.

Experiments

Method DP [4] DCO [1] statistics det. exclusi traj. exclusi

combined

Method	Recall	Prcsn	MT	ML	FM	ID				
DP [4]	67.4%	91.4%	50.2%	9.9%	143	4				
PIRMPT [5]	76.8%	86.6%	58.4%	8.0%	23	11				
Online CRF [3]	79.0%	90.4%	68.0%	7.2%	19	11				
Our method*	77.3%	87.2%	66.4%	8.2%	69	57				
*Augmented with a simple tracklet linking scheme.										

Summary

- at the detection level using non-submodular constraints,
- at the trajectory level using a co-occurrence label cost.
- Moreover, we proposed an expansion move-based optimization scheme and presented a strategy to derive individual energy components from a statistical analysis of ground-truth annotations.

TECHNISCHE UNIVERSITÄT DARMSTADT

• Public, challenging datasets: PETS'09, TUD and ETH. • Publicly available ground truth, detections and evaluation script [1, 3].

Quantitative evaluation

LOO cross-validation results on six sequences

	MOTA	MOTP	MT	ML	FM	ID
	37.4%	64.8%	7	17	104	114
	42.2%	64.1%	11	12	48	65
	45.4%	60.8%	11	12	41	55
ion	46.7%	63.0%	11	12	38	48
ion	46.6%	62.7%	10	12	49	69
	51.5%	64.4%	11	13	43	54

Comparison to other methods

- We incorporated exclusion modeling into a discrete-continuous CRF

