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Motivation and Overview

Following the tracking-by-detection approach, multi-target
tracking involves two tightly coupled challenges:

1. Data Association 2. Trajectory Estimation

?

?

?

?

?

?

?
? ?

?

?

?

?

?
?

?

?

?

?

?

?

?

?

?

?

?

?

What is the source of
each observation?
(discrete problem)

What are the actual
spatio-temporal motion

patterns of targets?
(continuous problem)

Most previous work focused mainly on one aspect.

Our approach: Combine both problems into a single
discrete-continuous energy; solve each aspect efficiently
in its natural domain.

Setting

Given:
• a set of target hypotheses (detections) D
• a set of trajectory hypotheses (models) T = {T1, . . . , TN}
• a set of labels L = {1, . . . ,N} ∪∅ (∅ ≡ false alarms)

Goal:
Assign detections to models and improve trajectories by
alternating between discrete and continuous optimization.

Continuous Trajectory Model
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2D cubic B-splines with explicit
start (s) and end (e) points.

Ti : t ∈ [si,ei]→ (x, y)T ∈ R2

ΔΔ

A support margin ∆ is added for better spline behavior.

Convex Continuous Optimization

Subproblem 2: Given data association, fit parametrized
trajectory models; perform weighted least squares on
each active trajectory:

E te
f (Ti) =

∑
t

∑
j

ctj ·
∥∥ptj − Ti(t)

∥∥2 → min . (1)

Graph-Cuts-Based Discrete Optimization

Subproblem 1: Given trajectories, perform data
association (usually more challenging); we cast it as a
multi-labeling problem

Eda
T (f) =

∑
d

U(fd, T ) +
∑
(d,d′)

S(fd,fd′)→ min (2)

with the data term
U(l, T ) = ctj · ‖ptj − Tl(t)‖2 (3)

and the generalized Potts smoothness term
S(fdt,fd′t+1) = η · δ

[
fdt − fd′t+1

]
. (4)

smoothness

data

The energy (2) is submodular and can be minimized
efficiently by α-expansion.

Discrete-Continuous Energy

A naive combination of (1) and (2) will not work well.
Challenge: How to incorporate a regularizer and
higher-order terms?

Formulate the problem with a single discrete-continuous
energy with label cost:

E(T ,f) =
∑
d

U(fd, T ) +
∑
(d,d′)

S(fd,fd′) + κ · hf(T ). (5)

•For κ = 0 minimizing E w.r.t. T amounts to convex least
squares optimization, cf. Eq. (1).
•Minimizing E w.r.t. f amounts to solving a multi-label

pairwise MRF.

Multi-Target Tracking with Label Cost

Following the recent work of Delong et al. [1] we integrate
the label cost h(T ) into our energy. It naturally handles
•Regularization: Avoids overfitting by enforcing a

constant penalty on each active model.
•Model assessment: “Good” trajectories are favored

while implausible ones are penalized.

Trajectory Assessment

The full label cost consists of five components:

hf(T ) =
∑
i

λhdyn
i + νhper

i + ξhfid
i + ζhcol

i + hreg
i . (6)
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Limitations. The label cost h(T ) depends on trajectory T
→ continuous optimization w.r.t. T is non-trivial.
Perform sanity check after each continuous optimization
(1):
if Enew ≤ Eold accept new trajectory,
else discard this step.

Algorithm in a Nutshell

Detections Initial Models Relabeling Refitting

Hypotheses Maintenance

At each iteration new hypotheses are generated
• randomly
• by extending or merging existing ones
Unused models are removed after a few iterations.

Experiments

•Publicly available datasets: TUD and PETS’09 [2].
•Standard CLEAR MOT metrics.
•Evaluated fairly by the PETS organizers.

Averaged Baseline Comparison
TUD+PETS MOTA↑ MOTP↑ FPR↓ FNR↓ ID Sw.↓
Detector – – 39 27.2 –
RANSAC 39.8 76.0 2.4 57.6 12.8
RANSAC w/ GT 62.0 76.7 9.7 28.2 7.0
Our method 71.4 74.7 4.4 24.1 7.0

Comparison to Other Methods
PETS S2.L1 MOTA MOTP MODA MODP
ILP [3] 82 % 56 % 85 % 57 %
Particle Filtering [4] 75 % 60 % 89 % 60 %
Our method 89 % 56 % 91 % 57 %

Qualitative Results

Conclusion

•We presented a discrete-continuous energy that
combines data association and trajectory estimation.
•Our formulation captures many desirable properties of

multi-target tracking.
•High-order terms are integrated through the label cost.
•By keeping the continuous part convex and the discrete

part submodular, strong minima are found efficiently.
•Our source code is freely available at: goo.gl/rkKXN.
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