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Abstract

The problem of multi-target tracking is comprised of two
distinct, but tightly coupled challenges: (i) the naturally dis-
crete problem of data association, i.e. assigning image ob-
servations to the appropriate target; (ii) the naturally con-
tinuous problem of trajectory estimation, i.e. recovering the
trajectories of all targets. To go beyond simple greedy solu-
tions for data association, recent approaches often perform
multi-target tracking using discrete optimization. This has
the disadvantage that trajectories need to be pre-computed
or represented discretely, thus limiting accuracy. In this pa-
per we instead formulate multi-target tracking as a discrete-
continuous optimization problem that handles each aspect
in its natural domain and allows leveraging powerful meth-
ods for multi-model fitting. Data association is performed
using discrete optimization with label costs, yielding near
optimality. Trajectory estimation is posed as a continuous
fitting problem with a simple closed-form solution, which is
used in turn to update the label costs. We demonstrate the
accuracy and robustness of our approach with state-of-the-
art performance on several standard datasets.

1. Introduction

Research in multi-target tracking has shown significant
progress in recent years. Nevertheless, current algorithms
only achieve reasonable performance in comparably easy
conditions with only few targets. As soon as the area of
interest becomes crowded, the human ability to correctly
identify and follow targets – when given sufficient time –
still greatly exceeds automatic approaches.

Many of the most successful tracking methods at present
perform tracking by detection, i.e. the target is represented
by an object model that can be detected in every frame inde-
pendently [e.g., 20, 25], in some cases in combination with
an online model to deal with lighting and appearance vari-
ation [e.g., 11]. The advantages of using an object detector
are that it naturally handles re-initialization if a target has
been lost, and that it avoids excessive model drift [7]. The
detector yields the per-frame evidence for the presence of
a target. Hence, when dealing with a single target, track-
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Figure 1. Given a number of unlabeled object detections (a) and
a number of possible trajectory hypotheses (b), our method labels
all detections (c) and re-estimates the trajectories (d) using an al-
ternating discrete-continuous optimization scheme.

ing amounts to fitting a single temporally consistent trajec-
tory such that it optimally accounts for that evidence. In
the multi-target case the task is significantly more difficult,
since the issue of data association must be addressed at
the same time. Intuitively speaking, one has to establish a
unique identity for each target, and then simultaneously es-
timate the motion patterns of all targets and the assignment
of detections to the targets.

This poses a number of difficult challenges. To start
with, the number of targets is usually unknown and may
vary over time. In addition, the detector output is only partly
reliable, thus one has to account for missing evidence (false
negatives), as well as incorrect evidence (false alarms). The
task is further complicated by the fact that unless targets al-
ways remain well separated, the space of possible trajecto-
ries grows exponentially over time. Furthermore, trajecto-
ries should obey certain constraints, such as that two targets
cannot be at the same location at the same time. Address-
ing these challenges requires coping with two distinct, but
tightly coupled modeling issues. Labeling each detection as
either belonging to a certain target or being a false alarm
is intrinsically in the discrete domain. For reasonable in-
terpretations of the observed scene, the same detection can
only have a single label. However, the target locations over
time are naturally described in a continuous state space (this
may also include further dimensions such as size, velocity,
etc.).

Existing techniques strike the balance between the two
tasks in different ways. An extensive body of recent work
focuses on data association and uses powerful discrete op-
timization algorithms to approach this NP-hard problem.
However, the continuous aspect of trajectory estimation suf-
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fers, either because trajectories have to be pre-computed in
absence of any data association [26, 27], or the trajecto-
ries are spatially discretized [2, 4]. Other techniques fo-
cus on trajectory estimation in a continuous state space,
but limit the data association to a choice from a pre-
computed set of potential labelings [17]. Sampling-based
approaches [14, 19] have attempted to build a bridge be-
tween the discrete and continuous aspects, but remain rela-
tively limited in the expressiveness of the underlying model.

In this paper we formulate data association and trajec-
tory estimation jointly as the minimization of a consistent
discrete-continuous energy, which treats each aspect in its
natural domain. To that end we build on recent advances
in multi-model fitting introduced by Delong et al. [9]. We
show how to formulate multi-target tracking in that frame-
work and extend the inference algorithm accordingly. Tra-
jectories are modeled by piecewise polynomials, which
can be fitted to a set of target hypotheses in closed form.
Given these trajectories, data association is updated by α-
expansion, taking into account global trajectory properties
such as the dynamics and persistence of moving objects
through individual label costs. The two steps are alter-
nated to minimize a single discrete-continuous objective,
such that trajectory estimation can take advantage of data
association and vice versa (cf . Fig. 1).

The present work thus makes the following contribu-
tions: (i) we formulate multi-target tracking as the mini-
mization of a unified discrete-continuous energy; (ii) we
demonstrate the applicability of the label-cost framework
to the tracking problem; and (iii) extend this scheme to take
into account the problem specifics, where measuring the
goodness of a trajectory goes beyond the geometric fitting
residual. To the best of our knowledge, this paper is the first
to pose tracking as discrete-continuous optimization with
label costs. As our experiments on various standard datasets
indicate, this substantially increases the tracking accuracy
while retaining the benefits of performing non-greedy data
association.

2. Related Work
Tracking has been an active research topic in computer

vision and other fields for several decades. In this review we
thus concentrate on recent advances in visual multi-target
tracking.

Multi-object tracking methods can be divided into two
categories. The first only relies on the information from
past frames to estimate the current state recursively. While
early Kalman filtering approaches [21] only model linear
target motion, more recent sample-based filters, such as par-
ticle filtering [6, 14], can deal with more complex multi-
modal posteriors. However, the number of particles needed
to accurately approximate the posterior in complex situa-
tions grows quickly and is hard to handle in practice.

The second category allows for a certain latency and
globally solves for all trajectories within a given time win-
dow. In this case, it is common practice to restrict the op-
timization to a finite state space. One way to do this is
to restrict the set of possible object locations, such as by
requiring trajectories to exactly pass either through the in-
dividual detections [13], or through a set of pre-computed
tracklets [26, 27]. The (near) optimal solution can then be
found by linking the detections and tracklets by max-flow
computation. A slightly different approach is presented in
[17, 18], where a redundant set of putative trajectories is
pre-computed, and the optimization takes place at the tra-
jectory level by pruning to an optimal subset, formalized as
a quadratic Boolean problem.

A different way to reduce the complexity is to subdivide
the tracking area into disjoint, locally fully connected cells.
Object motion is then described by binary occupancy vari-
ables for those cells, and the resulting problems are solved
to (near) global optimality using LP-relaxation [2, 4].

Somewhat against the trend, [3] also belongs to the sec-
ond group of non-recursive trackers, but relaxes all discrete
variables to a completely continuous state space. This, how-
ever, results in a highly non-convex optimization with many
local minima, which necessitate a heuristic energy mini-
mization scheme with repeated jump moves.

Here, we aim for a mixed discrete-continuous formula-
tion, which we feel is a more natural way to describe the
situation: data association between target detections and
trajectories is kept discrete, nonetheless trajectory fitting
is performed in the continuous domain without artificially
restricting the state space. The proposed formulation al-
lows to improve target locations compared to the – neces-
sarily noisy – detection evidence, and yields smooth target
dynamics. Nevertheless, the data association continues to
be amenable to well-established discrete optimization tech-
niques for labeling problems, such as graph cuts [5, 16]
and (tree-reweighted) belief propagation [e.g., 15]. In con-
trast to previous discrete-continuous approaches based on
Markov Chain Monte Carlo (MCMC) sampling [14, 19],
the label cost framework makes it rather easy to incorpo-
rate global trajectory properties into the formulation, such
as high-order data fidelity, which penalizes trajectories that
do not pass near detections for extended periods.

3. Discrete-Continuous Multi-Object Tracking
In agreement with the majority of recent multi-target

tracking methods [e.g., 1, 4, 18, 27], we pursue tracking
by detection. Targets (here, pedestrians) are separated from
the background in a preprocessing step and form a set of
target hypotheses, which are then used to infer the targets’
trajectories. We thus run a sliding window detector, based
on SVM classification of histograms of oriented gradients
(HOG) [8] and relative optical flow (HOF) [24]. The de-
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Figure 2. Starting from a set of object detections and trajectory hypotheses (left column), our algorithm performs data association and
trajectory estimation by alternating between solving a multi-labeling problem, and minimizing a convex, continuous energy. The current
set of trajectory hypotheses at each iteration is shown in the second row.

tector yields a set of target hypotheses D. We denote the
jth detection at time t ∈ {1, . . . ,T} as dtj, its location as
ptj ∈ R2 and ctj its confidence. If the camera calibration
is available and a reliable depth estimate can be obtained,
the ptj represent (x, y)-coordinates on a ground plane. Oth-
erwise, they correspond to pixel coordinates on the image
plane. To emphasize the distinction between discrete and
continuous variables, we write discrete ones in typewriter
font (a,b, . . .) and continuous ones in italics (a, b, . . .). Dis-
crete sets are denoted with bold capitals (A,B, . . .) and
continuous ones with calligraphic letters (A,B, . . .).

Given the set of target hypotheses D, our goal is to iden-
tify a set of target trajectories T = {T1, . . . , TN}. This
implies that we also need to search for a data associa-
tion f, which for each detection d ∈ D assigns a label
fd ∈ L = {1, . . . ,N} ∪ ∅. Thereby a detection is either
identified as belonging to one of the trajectories or, using
the additional outlier label ∅, identified as a false alarm.
We eventually aim to perform multi-target tracking by min-
imizing a joint energy E(T ,f) w.r.t. the trajectories T and
the data association f. To ease understanding, we first in-
troduce the component energies and unify them later.

3.1. Continuous trajectory model

In contrast to purely discrete approaches to multi-target
tracking [2, 4], we represent individual trajectories in con-
tinuous space and use cubic B-splines for that purpose. This
turns out to be a suitable representation for target motion in
real world scenarios, as it avoids discretization artifacts and
offers a good trade-off between model flexibility and intrin-
sic motion smoothness. More specifically, the spline for
each trajectory Ti : t ∈ R+

0 → (x, y)T ∈ R2 describes the
target location (x, y)T for each point in time t. We assume
that the spline has a varying number ci of control points and

is parametrized by a coefficient matrix Ci ∈ R2ci×4. We
found that it is advantageous to explicitly model the tempo-
ral starting points si and end points ei of each trajectory
(t ∈ [si −∆,ei + ∆]), because the splines tend to take on
extreme values outside their support otherwise, which re-
sults in highly unlikely motion patterns. To ensure that the
spline does not take on extreme values immediately outside
of [s,e], which would prevent other detections in adjacent
frames from being assigned to the trajectory later, we add a
safety margin of ∆ on either side.

If we for now suppose that we are already given a data
association f, we can formulate the trajectory estimation
problem as minimization of the energy

Ete
f (T ) =

N∑
i=1

(
Ete
f (Ti) + Ête

v (Ti)
)
, (1)

where Ete
f (Ti) models how well trajectory Ti fits to the hy-

potheses assigned by f and Ête
v (Ti) models the smoothness

of Ti on the safety margin. For each trajectory we aim to
minimize the weighted Euclidean distance to each assigned
target hypothesis in all valid frames:

Ete
f (Ti) =

ei∑
t=si

|Dt|∑
j=1

δ
[
i− fdtj

]
· ctj ·

∥∥ptj − Ti(t)
∥∥2 , (2)

where |Dt| is the number of detections in frame t. The
Kronecker delta (δ[a − b] = 1 if a = b, and 0 otherwise)
ensures that only target hypotheses dtj are counted that are
assigned to trajectory i. On the safety margin the spline is
fit to virtual locations vti obtained by linear extrapolation:

Ête
v (Ti) =

∑
si−∆≤t<si
ei<t≤ei+∆

∥∥vti − Ti(t)
∥∥2 . (3)



In all our experiments we use ∆ = 2. A convenient property
of this cubic B-spline formulation is that minimizing Eq. (1)
amounts to solving a weighted least squares problem, which
can be done in a globally optimal fashion in closed form.

3.2. Discrete data association

Data association is often the most challenging aspect
of tracking multiple targets. We formulate it as a multi-
labeling problem, which has the advantage that powerful
discrete optimization approaches can be leveraged. Recall-
ing the notation from above, our goal is to estimate a label-
ing f that uniquely assigns each detection d ∈ D to one of
the N trajectory hypotheses T = {T1, . . . , TN}, or identifies
it as a false alarm using the outlier label ∅.

A large class of labeling problems in computer vision
are formulated in terms of the minimization of an energy
of a discrete, pairwise Markov random field. This also
serves as the starting point here. To that end we identify
each individual detection d ∈ D with a vertex of the graph
G = (D,E). Furthermore, all pairs of detections in adja-
cent frames whose distance is below a threshold τ are con-
nected by an edge (cf . Fig. 3):

E =
{(
dtj,d

t+1
k

)∣∣∣ ∥∥ptj − pt+1k

∥∥ < τ,t = 1, . . . ,T− 1
}
.

The motivation for this is that nearby detections in adjacent
frames should be encouraged to have the same trajectory
label. We refrain from longer-range connections, as a large
threshold τ would be needed to allow for sufficient target
dynamics, coming at the cost of a dense graph and poten-
tially inappropriate label smoothing. Overall, this gives rise
to the discrete pairwise MRF energy

Eda
T (f) =

∑
d∈D

Ud(fd, T ) +
∑

(d,d′)∈E

Sd,d′(fd,fd′), (4)

consisting of a unary or data term Ud for each vertex (detec-
tion) and a pairwise smoothness term Sd,d′ for each edge.
Chains of vertices linked by such pairwise potentials can be
viewed as probabilistic “soft tracklets”.

While minimizing the energy in Eq. (4) w.r.t. the label-
ing f is in general NP-hard, globally optimal solutions can
be found in polynomial time for binary, submodular prob-
lems [16]. Moreover, well-proven approximate inference
algorithms exist for the multi-label case [e.g., 5] and the
non-submodular case [e.g., 15, 22].

Data term. As usual, the data term is responsible for keep-
ing the solution close to the observed data. To stay con-
sistent with Eq. (2), we use the squared Euclidean distance
between the detection location ptj and its associated trajec-
tory Tl, weighted by the detection confidence ctj:

Udtj(l, T ) = ctj · ‖ptj − Tl(t)‖2. (5)

τ
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Figure 3. Neighborhood structure of the underlying pairwise
Markov random field. Detections in adjacent frames are connected
if their distance is below a certain threshold.

If the detection is labeled as an outlier, it is penalized with
a constant outlier cost O, again modulated by ctj:

Udtj(∅, T ) = ctj ·O. (6)

A low confidence score of the object detector usually means
one of two things: either the output is a false alarm, or the
bounding box is not properly aligned with the object. The
data term incorporates this by penalizing a larger distance
to a weak detection less than to a confident one (Eq. (5)).
The weight of the outliers is similarly reduced (Eq. (6)), so
as to promote false detections being labeled as outliers.

Smoothness term. The pairwise terms connect spatio-
temporal neighbors and favor consistent labelings between
them based on a simple generalized Potts potential:

Sdtj,dt+1k
(fdtj ,fdt+1k

) = η · δ
[
fdtj − fdt+1k

]
. (7)

3.3. Discrete-continuous tracking with label costs

Due to the choice of formulations for both trajectory es-
timation and data association, it is now possible to unify
them in a single, consistent energy function:

E(T ,f) =
∑
d∈D

Ud(fd, T ) +
∑

(d,d′)∈E

Sd,d′(fd,fd′)

+

N∑
i=1

Ête
v (Ti) + κ · hf(T ).

(8)

To understand this formulation, it is instructive to first con-
sider the case when the last term is not active (i.e. κ = 0). In
this case minimizing Eq. (8) w.r.t. the trajectories T given
a fixed labeling f is equivalent to trajectory estimation, i.e.
minimizing Eq. (1), and minimizing it w.r.t. the labeling f
given fixed trajectories T is equivalent to data association,
i.e. minimizing Eq. (4). However, alternating minimization
of such an objective will not lead to the desired result. The
most obvious problem (but not the only one) is that neither
of the two parts includes a model selection term to regular-
ize the number of trajectories. Given the variable number
of targets, the alternation would thus overfit by instantiating
more trajectories to reduce the fitting error.
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Figure 4. The high-order data fidelity hfid addresses the problem of
long time spans during which a trajectory has no nearby detections
(a). The blue trajectory in (b) has a much lower label cost.

To overcome the problem we follow the recent work of
Delong et al. [9] and rely on a so-called label cost term
hf(T ), which specifies a cost that is applied to each label
and takes effect as long as the labeling contains this label at
least once. More specifically, our label cost term hf(T )
• integrates a dynamic model and keeps trajectories

within physical limits,
• enforces long, persistent trajectories, by penalizing

long sections of missing evidence, as well as tracks
that start or end far from the image border,
• discards mutually competing hypotheses that cannot

exist simultaneously, and finally
• penalizes the total number of current targets.

We now turn to the individual components of the label cost.

Dynamics. In real world tracking applications, some prior
information is usually available about the targets’ motion.
Most importantly, their velocity is bounded by physical con-
straints. We therefore impose a penalty on the cubic coeffi-
cient of the splines, which carries the predominant influence
on the maximal velocity. The resulting label cost for trajec-
tory Ti is defined as

hdyn
i = λ ·max

r
Ci(r, 1). (9)

Persistence. Enforcing long, persistent trajectories is key
to avoiding unnecessary identity switches. Our spline rep-
resentation allows us to identify the start and end points of
each trajectory and impose a higher penalty on those that
initiate or terminate far from the image border:

hper
i = µ·

(
b
(
Ti(si)

)
+b
(
Ti(ei)

))
+ν·(ei−si)−1, (10)

where b(·) denotes the distance to the image border. The
last term penalizes short trajectories.

High-order data fidelity. The unary data term from Eq. (5)
encourages trajectories to pass near the detections to better
explain the observed image evidence. In practice we find
that this alone frequently leads to trajectories that do not
pass near any detection for extended periods (cf . Fig. 4(a)).
While the model should allow for such gaps to be able to
handle temporary target occlusions (Fig. 4(b)), it is impor-
tant to penalize gaps that are too large. This aspect cannot
be trivially incorporated into the unary data term as it re-
quires the entire trajectory to be considered; we therefore

integrate it into the label cost. Trajectories that are far away
from detections over longer time spans are assigned a higher
cost than those that are continually near detections:

hfid
i = ξ ·

∑
k

|Gk|3, (11)

where the Gk are the sets of all consecutive frames in which
the trajectory Ti does not pass near any detection (no matter
whether these detections are assigned to Ti or not, other-
wise one would already have to know the data association).

Mutual exclusion. A further aspect of multi-target track-
ing is collision avoidance. The most natural approach may
seem to formulate collision avoidance as a pairwise term –
if two putative target locations are close to each other, add
a high penalty unless at least one of them is labeled as an
outlier. Unfortunately this complicates inference consider-
ably, because repulsive edge potentials that favor two nodes
having different labels are supermodular. While there are
approximate inference algorithms that can deal with super-
modular terms [15, 22], they still tend to lead to better ap-
proximate solutions for submodular energies.

Instead, we incorporate collision handling into the label
cost. To this end, the minimal distance between all pairs of
trajectories at the time where they are closest to each other
is computed and used to define the label cost:

hcol
i = ζ ·

(
min
j<i

min
t∈O
‖Ti(t)− Tj(t)‖

)−1
, (12)

where O = {max(si,sj), . . . ,min(ei,ej)} is the tempo-
ral overlap of the two trajectories. An intuitive interpreta-
tion is that a configuration where two trajectories Ti and Tj
are too close is highly unlikely or even physically impos-
sible. In this case, the discrete optimization procedure will
choose to abandon the one with the higher ID (i.e. Ti) be-
cause of its high label cost. This way trajectory hypotheses
that were initially proposed earlier are favored over more
recently generated ones (cf . Sec. 3.4).

Regularization. Finally, a constant regularization cost
hreg
i = 1 is used to penalize too many existing trajectories.

Full label cost. The entire label cost is thus defined as

hf(T ) =

N∑
i=1
∃d:fd=i

hdyn
i + hper

i + hfid
i + hcol

i + hreg
i . (13)

Note that the weighting relative to the unary and pairwise
terms is controlled by κ, see Eq. (8). To understand the
effect of Eq. (13) it is important to realize that the cost is
only incurred for those trajectories that have at least one
detection assigned to them.

3.4. Optimization

While optimization with label costs is challenging due
to the fact that they are global terms, it can be approached



using the integrated energy minimization framework of
[9, 12]. To that end we alternate between minimizing
Eq. (8) w.r.t. f and T . Data association, i.e. minimiza-
tion w.r.t. f, thereby benefits from a seamless integration of
the label costs into the well studied α-expansion framework
with graph cuts, because the energy function remains sub-
modular. This not only leads to strong local optima in prac-
tice, but also guarantees a bounded optimality gap (see [9]
for details regarding the theoretical properties). Trajectory
estimation, i.e. minimization w.r.t. T , is somewhat more
challenging because the label cost is difficult to optimize
w.r.t. the trajectories Ti. To cope with this, we temporarily
disregard the label cost, perform least squares minimization
of the remaining terms for each individual Ti and verify that
this actually reduces the overall energy, including the label
cost. If the overall energy with label cost is not reduced, the
previous trajectory is retained. The energy from Eq. (8) can
thus only decrease or stay the same.

The motivation is the following: on one hand, the sim-
plified minimization is convex and can be carried out effi-
ciently in closed form, yet is guaranteed to never increase
the energy. On the other hand, the simplification should
have only a small effect in the context of the complete op-
timization scheme: near good minima of the energy the
gradient of hf(T ) will be small, because the solution al-
ready obeys the physical constraints of Sec. 3.3; far from
the minima, a large ∂

∂T hf(T ) would mean that a different
path of the trajectories would be physically a lot more plau-
sible while still staying close to the evidence, in which case
it is likely to be picked up by the hypothesis expansion (see
below). We thus prefer to defer the difficult aspects of the
energy to subsequent iterations of the discrete optimization.

Generating initial trajectory hypotheses. The optimiza-
tion is bootstrapped with an initial set of trajectory hypothe-
ses obtained in two ways: We use RANSAC to fit trajecto-
ries to small randomly chosen subsets of detections (two
in our case). To maximize the number of useful trajectory
hypotheses, the random sampler prefers detections that are
close in space and time, as well as trajectories that pass near
more detections. Additionally, we generate candidate tra-
jectories using an extended Kalman filter (EKF) initialized
at all detections and using a variety of parameters. Although
different sets of initial trajectory hypotheses may in general
lead to slightly different results, we found that the variations
of the final solution are marginal.1

Expanding the hypothesis space. Depending on the initial
number of trajectories, a hypothesis space with a fixed num-
ber of candidates may be too restrictive to obtain a strong
minimum of the energy. To give the optimization more flex-
ibility, we therefore expand the search space after each it-

1It is a common observation that α-expansion is largely independent of
the initialization, unless the unaries are very weak.
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Figure 5. Convergence of the optimization. The energy keeps de-
creasing for 5-20 iterations (dashed lines, rescaled for visualiza-
tion), and this is reflected in the tracking accuracy (solid lines).

eration, based on the current solution. Note that additional
hypotheses do not change the nature of the energy; solutions
in the expanded space can only have equal or lower energy.

New hypotheses are generated in a variety of ways: (1)
new trajectories are randomly fitted to all detections, as well
as specifically to those labeled as outliers; (2) existing tra-
jectories are expanded in time or split in regions with no
detections; (3) pairs of existing trajectories are merged into
new ones as long as their combination results in a physically
plausible motion; (4) splines with a higher number of con-
trol points are added on top of currently active ones. Note
that in all cases existing trajectories are retained to ensure
that the energy does not increase. To nonetheless keep the
number of possible trajectories from growing arbitrarily, all
hypotheses that have a higher label cost than the current
value of the energy are removed from the hypothesis space,
which guarantees that active hypotheses are never removed.

Implementation details. Although all components of the
label cost can be weighted individually, we found that in
the majority of settings the results remain stable. Empiri-
cally, the penalty ζ for overlapping trajectories can be set
to 0. The overlap is rather expensive to compute, whereas
in our experience the regularization term hreg already pe-
nalizes duplicate trajectories such that explicitly modeling
exclusion does not improve performance. To reduce the ef-
fect of random sampling, we run the optimization with five
different random seeds and pick the result with the lowest
energy. The convergence behavior is shown in Fig. 5. Note
that although the most significant performance boost usu-
ally appears within the first few iterations, the optimization
scheme is still able to find better results in later expansion
steps. Our current MATLAB code takes∼ 0.5s per frame to
converge (excluding the object detector). With an optimized
implementation real-time performance is within reach.

4. Experiments
We evaluate our method on four publicly available video

sequences. Three sequences (Campus, Crossing and Stadt-
mitte) are taken from the TUD dataset [1]. The videos are
91, 201 and 179 frames long and show walking pedestrians
in a city environment. Due to the low viewpoint, targets fre-



Table 1. Average performance over four datasets (see text).

2D perf. MOTA MOTP FPR FNR ID Sw.

detector – – 38.6 % 27.2 % –
baseline1 39.8 % 76.0 % 2.4 % 57.6 % 12.8
baseline2 61.1 % 74.7 % 9.7 % 29.1 % 10.2
baseline3 62.0 % 76.7 % 9.7 % 28.2 % 7.0
our method 71.4 % 74.7 % 4.4 % 24.1 % 7.0

Table 2. Comparison of our proposed method to two state-of-the-
art trackers on PETS’09 S2.L1. The results of [4, 6] were extracted
from Fig. 3 in [10] and are therefore rounded to the closest integer.

2D performance MOTA MOTP MODA MODP

Berclaz et al. [4] 82 % 56 % 85 % 57 %
Breitenstein et al. [6] 75 % 60 % 89 % 60 %
our method 89.3% 56.4% 90.8% 57.3%

quently become occluded for several frames and their size
in the image varies significantly. Note that although we do
not explicitly handle occlusions, our method is able to con-
nect the correct trajectories across occlusion gaps in most
cases. The low viewpoint makes it hard to correctly esti-
mate target locations on the ground plane. We thus prefer to
perform tracking in image space for these sequences. Addi-
tionally, we evaluate on the first view of the S2.L1 sequence
from the PETS 2009/2010 benchmark. This video of 795
frames, recorded from a distant viewpoint, has become a de
facto standard for benchmarking multi-target tracking.

For the quantitative evaluation we rely on the widely
used CLEAR MOT metrics [23]. The Multi-Object Track-
ing Accuracy (MOTA) combines all errors (missed tar-
gets, false alarms, identity switches) into one number,
normalized to the range 0..100 %. A match between
the tracker output and the ground truth is defined as >
50% intersection-over-union of their bounding boxes. The
related Multi-Object Detection Accuracy (MODA) only
checks for missed targets and false alarms, but does not
penalize trajectories switching from one target to another.
The Multi-Object Tracking Precision (MOTP) averages the
bounding box overlap over all tracked targets as a measure
of localization accuracy, whereas the closely related MODP
averages the overlap over all frames. Moreover, we also re-
port the false positive (FPR) and false negative rates (FNR),
as well as the number of identity switches (ID Sw.). Fi-
nally, for a direct comparison with [3] we report the number
of mostly tracked (MT) and mostly lost (ML) trajectories,
track fragmentations (FM), and ID switches.

Table 3. Comparison of our approach to the purely continuous
framework of [3] using their publicly available ground truth.

3D performance MOTA MOTP MT ML FM ID Sw.

TUD-Stadtmitte 61.8% 63.2% 6 0 1 4
[3] 60.5% 65.8% 6 0 4 7
PETS’09 S2.L1 95.9% 78.7% 22 0 8 10
[3] 81.4% 76.1% 19 0 21 15

We compare our method to various baselines (Tab. 1),
where we replace the α-expansion step by a greedy labeling
algorithm based on hypotheses from RANSAC. Given an
initial set of trajectory hypotheses (the same as in Sec. 3.4),
the baseline1 algorithm chooses the one with the lowest cost
(based on a truncated Euclidean distance to all detections
and separately tuning the threshold for better performance).
All detections within the threshold are then removed and
the next best trajectory is identified (similar to [1]). One
issue of this greedy strategy is that the number of targets
would grow until all detections have been explained by at
least one trajectory. To prevent this, we only allow a tra-
jectory to become active if the number of detections within
the threshold is large enough. As expected, greedy data as-
sociation quickly gets stuck in a local minimum and is not
able to recover from this, which results in a large number
of short trajectories. To improve this baseline, we enlarge
the initial set with all trajectory hypotheses extracted from
the final iteration of our discrete-continuous optimization
(baseline2), and finally even with the ground truth trajecto-
ries (baseline3). We are still able to outperform this “cheat-
ing” baseline by 9.4 percentage points even when the cor-
rect trajectories are available for greedy model selection.

Next, we compare to several state-of-the-art trackers.
To assess the benefits of the proposed formulation, we
compare to the entirely discrete formulation of Berclaz et
al. [4], the entirely continuous formulation of Andriyenko
and Schindler [3], as well as the recent particle filtering
method of Breitenstein et al. [6]. Of these methods, [3] has
been evaluated on the ground plane in 3D space, whereas
the two others have published results in 2D image space.

Table 2 shows a comparison to the available 2D results.
The outputs of all trackers, including ours, were evaluated
by the PETS organizers using their testing protocol and
withheld ground truth. In terms of MOTA we outperform
the (nearly) globally optimal discrete method of Berclaz et
al. [4] by ∼ 7 percentage points, and the particle filtering
framework of Breitenstein even by ∼ 14 percentage points,
although compared to the latter the precision is slightly
lower. Note that the gap in detection accuracy (MODA, not
counting identity switches) is smaller, an indication that the
improvement is indeed due to better data association.

To compare with the continuous formulation of [3] we
use their publicly available ground truth data (see Tab. 3).
Note that the 2D and 3D “ground thruths” were annotated
independently, and that the 3D evaluation requires a target
radius in 3D world units (defined in [3] to be 1 m). The
results thus differ. In the 3D evaluation, our method again
achieves clearly better performance, tracking more targets
and significantly reducing the number of track fragmenta-
tions and ID switches. The tracking precision on the TUD-
Stadtmitte dataset is slightly lower. We note though that the
low camera viewpoint makes precise 3D estimation rather



Figure 6. Example frames from our discrete-continous energy minimization approach on the PETS’09 S2.L1 and TUD-Crossing datasets.
People are successfully tracked over long time periods (depicted by corresponding trails) while preserving their identities.

difficult (for both the tracker and the annotator). Fig. 6 illus-
trates our tracking results. Note that our method shows ro-
bust performance independent of viewpoint and target size.

5. Conclusion and Future Work
We presented a global multi-target tracking approach

that jointly addresses data association and trajectory esti-
mation by minimizing a consistent discrete-continuous en-
ergy. The method proceeds iteratively by solving data as-
sociation to (near) global optimality by α-expansion with
label costs, and analytically fitting continuous trajectories
to the assigned detections. We demonstrated that the pro-
posed formulation outperforms greedy data association, as
well as both discrete and continuous state-of-the-art track-
ers. In future work we plan to explore alternative labeling
algorithms to go beyond submodular pairwise terms.
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