

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Objectives

- an energy function which represents the actual situation as faithfully as possible
- no a-priori restrictions of the state space
- a suitable (local) optimization scheme for the resulting energy

Choice of an energy function

Setting

- Tracking-by-detection: sliding window HOG, HOF [4]
- Tracking is performed in 3D (on the ground plane)
- State vector X consists of continuous ground plane coordinates of all targets in all frames

References

- [1] H. Jiang, S. Fels, and J. J. Little. A linear programming approach for multiple object tracking. In CVPR, 2007.
- [2] J. Berclaz, F. Fleuret, and P. Fua. Multiple object tracking using flow linear programming. In Winter-PETS, 2009.
- [3] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-object tracking using network flows. In *CVPR*, 2008.
- [4] Stefan Walk, Nikodem Majer, Konrad Schindler, and Bernt Schiele. New features and insights for pedestrian detection. In CVPR, 2010.

Multi-target Tracking by Continuous Energy Minimization

Anton Andriyenko¹ and Konrad Schindler² ¹ Computer Science Department, TU Darmstadt, Germany ² Photogrammetry and Remote Sensing Group, ETH Zürich

$$E_{\mathsf{reg}}(\mathbf{X}) = N + \sum_{i=1}^{N} \frac{1}{F(i)}$$

Acknowledgements We thank Stefan Walk and Christian Wojek for providing their detection and tracking (EKF) implementation.

Conjugate Gradient + 6 trans-dimensional jumps **Input:** *S* initial solutions **Output:** Best of $\leq S$ solutions for $s = 1 \rightarrow S$ for $m = 1 \rightarrow 6$ try jump move *m* (greedy) if $E_{new} < E_{old}$ perform jump move perform conjugate gradient descent end if end for end for **Return:** $\arg \min_{\mathbf{X}_s} E(\mathbf{X}_s)$

Initialization.

Any tracker or zero-solution possible

• In our experiments: Extended Kalman Filter or Integer Linear Programming

Comparison to baselines.

Sequ -

terra terra TUD PET mea

TECHNISCHE UNIVERSITÄT DARMSTADT

Experiments

Analyzing the objective.

Our energy function correlates well with tracking performance w.r.t. ground truth.

Quantitative Evaluation. Initial and final values for multiple optimization runs.

uence	MOTA [%]			MOTP [%]			MT			ID Switches		
	initial	final	diff	initial	final	diff	init	fin	diff	initial	final	diff
ace1	82.8	84.9	+2.1	74.3	79.6	+5.3	7	7	-0	14.4	19.6	+5.1
ace2	75.1	83.8	+8.7	71.7	76.7	+5.1	9	7	-2	11.7	17.1	+5.4
O-Stadtmitte	53.3	60.9	+7.6	57.4	65.9	+8.4	5	6	+1	3.8	6.0	+2.2
S'09 S2L1	64.7	78.7	+14.0	75.4	76.7	+1.4	9	16	+7	17.7	14.2	-3.4
an	69.0	77.1	+8.1	69.7	74.7	+5.1	8	9	+2	11.9	14.2	+2.3

Example Results.

Conclusion

• Multi-target tracking can be formulated with continuous objective functions • Meaningful (although local) energy minima can be achieved with gradient based optimization and trans-dimensional jump moves

• A hybrid optimization scheme yields state-of-the-art results on public datasets