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Objectives

• an energy function which represents the actual situation as faithfully as possible
• no a-priori restrictions of the state space
• a suitable (local) optimization scheme for the resulting energy

Choice of an energy function

energy

'posterior'

convex (submodular) non-convex
globally optimizable locally optimizable

ILP [1, 2] gradient descent + jumps
Network Flows [3]

crude approximation better approximation

Setting

• Tracking-by-detection: sliding window HOG, HOF [4]
• Tracking is performed in 3D (on the ground plane)
• State vector X consists of continuous ground plane coordinates of all targets in all

frames
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Energy

Global, continuous, differentiable

E = Eobs+αEdyn+ βEexc+ γEper+δEreg (1)

Obervation Model keeps trajectories close to detections
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Targets locations are
not restricted to a
discrete grid or non-
maxima suppressed
detections.

where xt
i = location of target i and dt

g = location of detection g at frame t

Dynamic Model favors constant velocity, performs ’intelligent smoothing’
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In continuous state
space the dynamic
model does not suf-
fer from aliasing.

where vt
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Mutual Exclusion avoids collisions
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This continuous
constraint accurately
captures the actual
overlap between
target volumes.

Persistence avoids abrupt termination of trajectories
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where b(·) denotes the distance to the border of the tracking area

Regularization keeps the solution simple with fewer targets and longer trajectories
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Non-convexity

The energy (1) is clearly not convex:
E(X)

X
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E(X)

X

The ridge of
high energy
between two
local minima is
caused either by
Eobs (a-b) or by
Edyn (c-d).

In general, non-convexity is due to the high-order dependence between variables
caused by physical constraints.

Minimization

Conjugate Gradient + 6 trans-dimensional jumps
Input: S initial solutions
Output: Best of ≤ S solutions
for s = 1→ S
for m= 1→ 6
try jump move m (greedy)
if Enew < Eold
perform jump move
perform conjugate gradient descent

end if
end for

end for
Return: arg minXs

E(Xs)
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Initialization.
• Any tracker or zero-solution possible
• In our experiments: Extended Kalman Filter or Integer Linear Programming

Experiments

Analyzing the objective.
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Correlation between Energy and Tracking Accuracy
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Our energy function correlates well with tracking performance w.r.t. ground truth.

Comparison to baselines.

Quantitative Evaluation. Initial and final values for multiple optimization runs.
Sequence MOTA [%] MOTP [%] MT ID Switches

initial final diff initial final diff init fin diff initial final diff
terrace1 82.8 84.9 +2.1 74.3 79.6 +5.3 7 7 -0 14.4 19.6 +5.1
terrace2 75.1 83.8 +8.7 71.7 76.7 +5.1 9 7 -2 11.7 17.1 +5.4
TUD-Stadtmitte 53.3 60.9 +7.6 57.4 65.9 +8.4 5 6 +1 3.8 6.0 +2.2
PETS’09 S2L1 64.7 78.7 +14.0 75.4 76.7 +1.4 9 16 +7 17.7 14.2 -3.4
mean 69.0 77.1 +8.1 69.7 74.7 +5.1 8 9 +2 11.9 14.2 +2.3

Example Results.

Conclusion

• Multi-target tracking can be formulated with continuous objective functions
• Meaningful (although local) energy minima can be achieved with gradient based

optimization and trans-dimensional jump moves
• A hybrid optimization scheme yields state-of-the-art results on public datasets
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