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Visual People Tracking

✔ CCTV: Increased safety

✔ Automated video analysis

✔ Crowd motion estimation

✔ Robotic navigation

Applications and Benefits
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Visual People Tracking

Drawback:
Heavy intrusion of privacy

✔ CCTV: Increased safety

✔ Automated video analysis

✔ Crowd motion estimation

✔ Robotic navigation

Applications and Benefits
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Existing Alternatives

[Spindler et al., 2006]

[Schiff et al., 2009]

[Wickramasuriya et al., 2005]
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Existing Alternatives

[Spindler et al., 2006]

[Schiff et al., 2009]

Such systems may fail (or be switched off)

[Wickramasuriya et al., 2005]
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Our Approach
● A different sensor modality

● Existing multi-target tracking techniques

Pyroelectric infrared sensors* ... ...mounted on a ceiling

*Also known as: Infrared motion sensors
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The Setup

43 nodes, ca. 3m stride. Total cost: ≈ $100 USD.
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Tracking with Infrared Sensors

[Hosokawa et al., 2009][Luo et al., 2009]

- Expensive sensor array 
with Fresnel lenses

A mostly unexplored research area!

- Limited state space
- Ad hoc algorithm for data association
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Benefits

● Individal identification impossible
– Respects privacy

● Insensitive to lighting conditions
● Low cost

Limitations
● Indoor application only
● Less flexible
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Main Challenges
● Extremely low resolution (43 sensors)
● A binary response at 2 Hz per sensor
● No visual (appearance) information
● Poor localization + sensor noise / delay
● Activation by several people
● Multiple measurements by one person
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Continuous Energy Minimization

E X =EobsEdynEexcEperE reg

State vector: X,Y-locations of all targets at all frames X∈ℝ
d , d≈2000

[Milan et al., PAMI 2014]
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Why Continuous Energy?

● Continuous trajectories
–  low sensor resolution not an issue

● No implicit data association
– multiple assignments possible

● Provides best results
– Measured by standard tracking metrics
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The Energy

E=Eobs+aEdyn+bEexc+cEper+dE reg
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Data Term

lobe size

E
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Optimization

● conjugate gradient descent for local optimization
● discontinuous jumps to determine dimensionality (number of targets)

E(X)

X
Jump moves

Conjugate gradient descent

Merge – Split
Grow – Shrink
Add – Remove
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Experiments
Synthetic Data

● Manual assignment of keyframes

● Interpolation and sensor simulation
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Measurements
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Measurements
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Ground Truth
T
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Experiments
Synthetic Data

● Manual assignment of keyframes
● Interpolation and sensor simulation

GTResult
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Result
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Result
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Real Data

● Up to six people in 
a large lab

● Two cameras 
(2 Hz)

● Temporal 
alignment

● Annotation of key 
frames (very 
approximate)
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Results (real)

GTResult
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Results (real)

GTResult
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Other Approaches

[Berclaz et al., PAMI 2011]

[Tao et al., Sensors 2012]
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Quantitative Results

Dataset Method MOTA [%] MOTP [%] ID sw #Targets (MAE)

Ours 76.0 73.6 13 0.54

Ours 55.3 54.6 43 0.76
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MOTA = normalized error count

MOTP = localization error (73% ≈ 35 cm)
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Quantitative Results

Dataset Method MOTA [%] MOTP [%] ID sw #Targets (MAE)

Ours 76.0 73.6 13 0.54

Linear DA [1] 66.6 64.6 58 0.57

DP [2] 55.9 65.3 57 0.62

KSP [3] 75.5 67.5 6 1.52

Ours 55.3 54.6 43 0.76

Linear DA [1] 9.3 50.1 252 1.00

DP [2] 9.6 47.3 128 1.25

KSP [3] 31.1 48.3 48 1.52

[1] Tao et al., Sensors 2012
[2] Pirsiavsah et al., CVPR 2011
[3] Berclaz et al., PAMI 2014
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Advertisement
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Advertisement

●  22 Sequences (old + new)
●  > 1300 Trajectories
●  > 100,000 Bounding boxes
●  Live online evaluation
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Advertisement



A. Milan et al. | Privacy-Preserving Multi-Target Tracking 36

Advertisement

http://motchallenge.net
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Summary

● A principled alternative to preserve privacy
● Continuous energy with soft assignments
● Still a very challenging problem
● Data + Code online

http://research.milanton.net/irtracking/
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