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Abstract. Automated people tracking is important for a wide range
of applications. However, typical surveillance cameras are controversial
in their use, mainly due to the harsh intrusion of the tracked individ-
uals’ privacy. In this paper, we explore a privacy-preserving alternative
for multi-target tracking. A network of infrared sensors attached to the
ceiling acts as a low-resolution, monochromatic camera in an indoor en-
vironment. Using only this low-level information about the presence of
a target, we are able to reconstruct entire trajectories of several peo-
ple. Inspired by the recent success of offline approaches to multi-target
tracking, we apply an energy minimization technique to the novel set-
ting of infrared motion sensors. To cope with the very weak data term
from the infrared sensor network we track in a continuous state space
with soft, implicit data association. Our experimental evaluation on both
synthetic and real-world data shows that our principled method clearly
outperforms previous techniques.

1 Introduction

Tracking multiple people in indoor environments has many important applica-
tions, including customer behavior analysis in retail, crowd flow estimation for
building design and planning of evacuation routes, or assistance in daily living for
elderly people. While standard surveillance cameras can be employed to address
this task, they also have several disadvantages. First, depending on the exact
setup, a camera network may be too costly to install and to maintain. Second,
standard RGB cameras are highly sensitive to lighting changes and do not work
in dark environments. Finally, and most importantly, surveillance cameras are
often seen as an intrusion into a person’s privacy because they enable a clear
identification of the observed person and provide rich visual information about
the appearance, pose and exact action of each subject [4, 5].

In this paper we present an affordable, privacy-preserving alternative to ad-
dress multi-target tracking. To that end, we employ a network of infrared motion
sensors that are attached to the ceiling in an indoor scenario. Each sensor is acti-
vated whenever a person passes underneath it, yielding a set of sparse measure-
ments that is then used to infer the exact location of each target. To reconstruct
the individual trajectories we rely on recent advances in multiple object tracking,
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e.g ., [1–3]. Although the sensory system mounted overhead does not suffer from
occlusion, a number of other challenges must be addressed. First, the number of
sensors is considerably lower than the number of pixels in a video, leading to a
very sparse signal that provides a rather crude approximation of true target lo-
cations. Second, a binary sensor response is the only available source of evidence
about the presence of a target. Therefore, high-level cues such as a person’s
appearance or a continuous-valued likelihood of an object detector cannot be
exploited. Third, each sensor can be simultaneously activated by several targets,
while one single target can activate multiple neighboring sensors when passing
between them. Hence we also have to allow many-to-one and one-to-many as-
signments. Note that the majority of multi-target tracking approaches cannot
be directly applied to the present setting because of their common implicit as-
sumptions that each measurement may originate from at most one target and
that each target can cause at most one measurement. The strategy we present
here is able to handle both cases. Our main contribution is twofold:

– We introduce a novel infrared tracking dataset including the measurements
and manually annotated ground truth. The dataset consists of three syn-
thetic and three real world sequences, covering various levels of difficulty.

– We demonstrate how a recent multiple target tracking approach developed
for regular cameras [2] can be adopted to address the challenges in this novel
setting.

In contrast to previous work in the realm of infrared-sensor tracking [6, 7], we
present a simple and more robust tracking method and evaluate its performance
using standard tracking metrics. To the best of our knowledge, this is the first
time that a global tracking approach is applied to infrared sensor responses.
Experimental results show the superiority of our method on several real-world
sequences. We make all our data as well as the source code publicly available.1

2 Related Work

Research on the automated tracking of multiple targets originated several decades
ago in the realm of aerial and naval navigation with radar and sonar sensors.
Some of the most notable early works include the multiple hypothesis tracker
(MHT) [8] and the joint probabilistic data association (JPDA) [9], which are
only rarely used nowadays, as their computation times scale exponentially with
the number of targets; these methods hence quickly reach their limits in crowded
environments. Such strategies usually apply filtering techniques, for example the
Kalman filter [10], in order to estimate the true target locations from noisy ob-
servations. More recent approaches follow an offline strategy, where a batch of
frames is analyzed at once [1–3, 11–13]. The main motivation behind this is that
potential errors may be corrected once more observation steps are available, mak-
ing these methods more robust against localization noise, false measurements,
and target drift.

1 http://research.milanton.net/irtracking
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Fig. 1. Overview of our infrared ceiling sensor network.

While RGB cameras or radar/sonar equipment have been the typical sensor
choice in the past, tracking results in the literature based on infrared sensors
are rather limited. The scheme proposed by Luo et al . [7] utilizes a Kalman
filter to estimate the location of a single target. However, a rather complex
hardware array, where each node consists of five individual sensors equipped
with specialized Fresnel lenses, is employed in their setup. Unfortunately, only
synthetically generated simulation results are presented. The tracking algorithm
described by Hosokawa et al . [6] relies on a more complex target localization
scheme and includes several ad-hoc procedures to resolve ambiguities. Tao et
al . [14] also follow a similar setup, but concentrate on activity recognition, in
particular fall detection, rather than on tracking individuals in a multi-person
scenario.

In contrast, we present an affordable and flexible framework with minimal
calibration effort that allows us to robustly keep track of several individuals
in an indoor scenario while preserving the individuals’ privacy. Quantitative
and qualitative evaluation on both synthetic and real-world data demonstrates
encouraging results.

3 Infrared Ceiling Sensor Network

We build on the sensor network originally proposed by Hosokawa et al . [6]. The
entire network consists of 43 nodes attached to the ceiling in a large room of
approximately 15.0 × 8.5 meters (cf . Fig. 2). Each node is a pyroelectric infrared
sensor, often simply referred to as an infrared motion sensor. The sensor is
activated whenever it detects an abrupt temperature change within its range.
We exploit this behavior to detect a person moving underneath it. To obtain
measurements that are more precisely localized, the detection cone is narrowed to
about a 70cm radius on the ground. The sensors are distributed across the entire
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Fig. 2. A sensor node (left) and the entire setup (right).

room such that they cover most of the area of interest and their fields-of-view
do not overlap substantially (cf . Fig. 1). The nodes do not have to be perfectly
aligned or arranged in a specific way during installation. An approximate location
of each node is sufficient for an accurate calibration, which makes the deployment
of such a system rather easy. Note that there is no other information available,
such that disambiguating the identity based on visual features is infeasible. The
sampling rate of the sensors can be adjusted for a specific application and is set
to 2 Hz in our setting. The cost of each sensor is as low as few US Dollars.

4 Multi-target Tracking

Most modern multi-target tracking approaches follow the so-called tracking-by-
detection strategy [2, 3, 12, 15, 16], which we also adopt here. In this two-stage
strategy a set of measurements is first obtained for each frame independently,
forming the target hypotheses. These observations, which are prone to noise and
potentially contain false measurements, then serve as input to a tracking algo-
rithm. Moreover, our method also belongs to the class of off-line (non-recursive)
state estimation techniques, where, instead of processing one frame at a time as
done, e.g ., in particle filtering [17], a larger time interval is analyzed in one step.
This significantly improves robustness and does not pose a serious limitation,
since a slight delay of only a few seconds (in our case 20 frames) is acceptable
in practice for the potential applications of our system.

We formulate tracking as minimization of a continuous energy function, which
we argue is particularly appropriate for the novel setting that we address here.
In particular, we follow the recent work of Milan et al . [2] and demonstrate how
it can be adapted to this rather different kind of imagery. The state vector X
consists of all (X,Y ) coordinates of all targets on the ground plane. We will
denote a location of person i in frame t with Xt

i, and the location of the sensor
node g with Sg. The set of active nodes at time t is denoted G(t). Finally, N
is the total number of targets, and si and ei mark the temporal start and end
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points of each target, respectively. The energy

E = Edet + aEdyn + bEexc + cEper + dEreg, (1)

consisting of a data term, three physically-based (soft) constraints, and a regu-
larizer is then minimized in order to find a locally optimal solution. The approach
offers two important advantages. First, trajectories are reconstructed in continu-
ous space such that the low spatial resolution of the sensor network is mitigated.
Second, data association is only solved implicitly and not restricted to one-to-
one correspondence between observations and target locations. In other words,
it is possible that the same measurement may in fact originate from two separate
targets, and that one single target can activate two sensors simultaneously. Both
situations frequently occur in the observed data and are correctly captured by
our model. The individual components are defined as follows:

Observation. The observation term Edet keeps the resulting trajectories close
to the obtained measurements. To reflect the localization uncertainty of the
infrared sensors, we use an inverse Cauchy-like function

Edet(X) =

N∑
i=1

ei∑
t=si

[
λ−

∑
g∈G(t)

s2

‖Xt
i − Sg‖2 + s2

]
, (2)

where s controls the size of the lobe. Given that the sensors’ field-of-view covers
a circular area of approximately 1.4 meters in diameter, we employ this value
in all our experiments. A uniform penalty λ is applied to all targets to prevent
false trajectories without measurements nearby.

Dynamics. The data acquired by infrared sensors is rather limited and exceed-
ingly noisy. A dynamic model is therefore important to bridge missing observa-
tions and to restrict data association to plausible solutions. Here, we rely on a
constant velocity assumption, and penalize acceleration using

Edyn(X) =

N∑
i=1

ei−1∑
t=si+1

‖Xt+1
i − 2Xt

i + Xt−1
i ‖2. (3)

Exclusion. Accurately modeling target exclusion is important for several rea-
sons. On one hand, it is desirable to obtain a physically plausible solution without
inter-target collisions. On the other hand, we must take into account that a sen-
sor response may be caused by more than one target and that one single target
can activate more than one sensor. A continuous exclusion term

Eexc(X) =
∑
i6=j

min{ei,ej}∑
t=max{si,sj}

1

‖Xt
i −Xt

j‖2
(4)

that directly penalizes situations when two targets come too close to one another
serves this purpose. It pushes two trajectories away from one another just enough
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to avoid a collision, but not too far, since a single measurement should be allowed
to explain two targets.

Persistence. Assuming that targets cannot appear or disappear in the middle
of the tracking area, the term

Eper(X) =
∑

i=1,...,N
t∈{si,ei}

1

1 + exp
(
− q · b(Xt

i) + 1
) (5)

enforces persistent trajectories and reduces the number of fragmentations. The
parameter q = 1/35 cm controls the entrance margin and b(·) computes the
distance of a trajectory to the border of the tracking area.

Regularization. Finally, we add a regularizer to keep the number of total tar-
gets low and enforce longer trajectories:

Ereg(X) = N + µ

N∑
i=1

|F (i)|−1 , (6)

where F (i) := ei − si + 1 is the total life span of the ith trajectory.

4.1 Optimization

Each energy component is differentiable in closed form, making the entire for-
mulation well suited for gradient-based minimization. We choose to apply a
standard conjugate gradient descent to minimize Eq. (1) locally. However, given
the highly non-convex nature of the energy, a purely gradient-based optimiza-
tion would be very susceptible to initialization. Therefore, we add a set of jump
moves, as in [2]. These non-local jumps in the energy landscape change trajec-
tory lengths and potentially the number of targets, thus allowing a more flexible
probing of the solution space to escape weak minima. Upon convergence of the
gradient descent, one of six jump moves described below is executed in a greedy
fashion; then the gradient descent restarts.

Growing and shrinking. Each trajectory can be extended by linear extrapo-
lation for an arbitrary number of time steps both forward and backward in time.
Similarly, a track is shortened by discarding a fragment of a certain length from
either end. Growing is useful for finding new targets, while shrinking weeds out
false positives that may have been introduced by noise or during intermediate
optimization steps.

Merging and splitting. Two existing trajectories are merged into one if the
merge lowers the energy. Note that the individual energy components, in partic-
ular the dynamics and the exclusion terms, assert that this step will not cause
physically implausible situations with intersecting trajectories or unlikely mo-
tion patterns. A single track may also be split into two at a specific point in
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Fig. 3. Qualitative results on synthetic (top row) and real data (middle and bottom
rows). 10 frames of both the recovered trajectories (solid) and the ground truth (dashed
lines) are shown at three example time steps for each sequence. Note that despite the
extreme amount of noise present in the observations (large circles), our method is able
to successfully recover most of the targets’ trajectories.

time. Both these moves provide a method to bridge over regions with missing
sensor responses and to reduce fragmentation of tracks and identity swaps.

Adding and removing. These two moves operate on entire trajectories. Re-
moving a false positive target from the current solution may decrease the overall
energy because it results in a more plausible explanation of the data. On the
other hand, it is important to allow for inserting new tracks around active sensor
locations that do not have a target nearby. This is done conservatively by adding
a short tracklet of only three frames. Note that it can grow and merge with other
existing trajectories at a later optimization step.

5 Experiments

We present an experimental evaluation of our method on both synthetic and real-
world data. Quantitatively assessing the performance of multi-target tracking is
an inherently challenging task [18]. Here, we follow the most common strat-
egy and present the evaluation using a set of standard metrics. Next to recall
and precision, we compute the CLEAR MOT [19] metrics consisting of MOTA
(Multiple-Object Tracking Accuracy) and MOTP (Multiple-Object Tracking
Precision). The MOTA includes all possible error types – spurious trajectories
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or false positives (FP), missed targets or false negatives (FN), and mismatches
or identity switches (ID) – and is normalized such that 100% corresponds to no
errors. The MOTP directly measures the performance of location estimation by
computing the average distance between the true target and the inferred loca-
tion, again normalized to 100%. We use a 1.5m hit/miss threshold on the ground
plane. The weights a through d for the individual energy terms in Eq. (1) were
determined empirically and kept fixed for all experiments at {.0006, .8, .08, .02}.
The additional parameters λ and µ were set to .004 and 1, respectively.

5.1 Datasets

Synthetic data. Acquiring large amounts of accurate ground truth for multi-
target tracking is tiresome and costly. Therefore, we first test our presented
method on a synthetic dataset. The data is created by simulating plausible tra-
jectories and the generated sensor responses. Trajectories are spline interpola-
tions between sparse key points corresponding to typical motion patterns. An
average target speed of 1m/s with Gaussian noise is assumed for our purpose.
A sensor is set to ‘active’ if at least one trajectory passes within a distance
close than its range of operation, which amounts to 70cm. Three sequences (s1
easy/medium/hard) with two, four and six targets, respectively, present a rea-
sonable variability in person count and density.

Real-world data. While simulated data may be comparatively easy to acquire,
it typically does not fully capture the complexity of real observations. Thus, it
is essential to also test a system on real sensor data. To that end, we recorded
three sequences of approximately two minutes each. Six persons were moving
freely around the entire walkable space inside the lab. The ground truth was
annotated manually, relying on videos from two cameras that served as refer-
ence (cf . Fig. 4). Note that a precise localization of each person is ambiguous –
and sometimes even impossible – with the available setup, due to low resolution
and/or occlusions. Nonetheless, this new dataset is a sensible basis to quanti-
tatively evaluate the tracking performance. The entire dataset consists of 974
frames, which amounts to over eight minutes of data. The average person count
across all sequences is 3.2.

Qualitative results of our proposed method are shown in Figure 3. Each
row depicts three frames from one particular sequence, while in each frame the
currently active sensors are indicated with large circles, and the estimated and
true trajectories are plotted with solid, respectively dashed lines for the past ten
time steps. Note the extremely noisy observations, including spurious activations
and missing signal.

Our method is able to correctly recover the number of targets and their tra-
jectories in cases where the targets remain well separated (see top row). Note that
a precise localization is not always possible due to the scarcity of the available
data, as can be seen, e.g ., for the red target. In realistic environments with more
targets and sensor noise, there is a certain drop in performance, as expected. The
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Fig. 4. A screenshot of the data acquisition setup. The video captured by two cameras
on the right serves as reference for annotating each individual’s location on the ground
plane. The large red circles indicate active sensors in the current frame.

main cause of failure are from ambiguous measurements, which typically occur
when people walk close to each other for a prolonged period of time (cf . bottom
left frame). In such cases, the sensors are unable to provide enough information
to robustly resolve the ambiguity.

5.2 Quantitative Evaluation

Table 1 shows quantitative results of our proposed method on all six sequences
(three synthetic (s*) and three real (r*) ones). Note that we achieve near perfect
precision and only few identity switches with simulated data, i.e. in the absence
of sensor noise. The performance decreases for real data, but still stays above
50% MOTA on average. Table 2 lists average results of our method compared
to those of three other strategies. One is a linear location estimation technique
specifically designed for inrared motion sensors, where the number of targets
is determined by connected components of sensor responses [14].2 While it can
recover most targets without producing too many false positives, the number of

2 Implementation provided by the authors.
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Table 1. Quantitative results on synthetic (top) and real (bottom) data.

Sequence Recall Precision MOTA MOTP FP FN ID

s1 easy 93.3 % 98.9 % 88.2 % 76.6% 2 13 8
s1 medium 82.3 % 97.1 % 76.2 % 73.1% 9 64 13
s1 hard 71.0 % 94.3 % 63.5 % 71.0% 25 170 19

mean (s*) 82.2 % 96.8 % 76.0 % 73.6% 12 82 13

r1 easy 84.2 % 81.0 % 57.5 % 53.8% 143 114 50
r1 medium 74.5 % 83.2 % 52.9 % 56.9% 88 149 38
r1 hard 74.4 % 85.3 % 55.4 % 53.1% 86 172 42

mean (r*) 77.7 % 83.2 % 55.3 % 54.6% 106 145 43

Table 2. Comparison to other methods averaged over synthetic (top) and real (bottom)
sequences. The best average performance for each measure is highlighted in bold face.

Method Recall Precision MOTA MOTP FP FN ID

sy
n
th

. Linear [14] 81.0 % 99.8 % 66.6 % 64.6 % 1 81 58
DP [20] 78.5 % 92.0 % 55.9 % 65.3 % 27 81 57
KSP [12] 78.9 % 97.5 % 75.5 % 67.5 % 6 83 6
Ours 82.2 % 96.8 % 76.0 % 73.6 % 12 82 13

re
al

Linear [14] 79.3 % 71.5 % 9.3 % 50.1 % 212 137 252
DP [20] 71.6 % 62.7 % 9.6 % 47.3 % 281 188 128
KSP [12] 89.4 % 63.7 % 31.1 % 48.3 % 337 70 48
Ours 77.7 % 83.2 % 55.3 % 54.6 % 106 145 43

ID switches is quite high. The second baseline is the globally optimal approach
by Pirsiavash et al . [20] based on dynamic programming (DP). It is able to
better keep correct identities over time, but struggles to handle the extremely
noisy measurements leading to a high number of false alarms and missed targets.
Finally, the third method is the k-shortest paths (KSP) approach [12], where tar-
gets are tracked on a discrete grid. Its power to robustly keep target identities
over long time periods is unfolded in the present setting with overhead sensors
and in absence of occlusion, particularly with noiseless synthetic data. However,
the coarse discretization of the grid is not able to handle real-world noisy mea-
surements, leading to many false tracks. The continuous state representation in
combination with the soft assigment strategy of our method clearly outperforms
previous techniques with respect to the most relevant tracking metrics (MOTA,
MOTP).

Finally, Table 3 shows the mean average people count error of the four meth-
ods, again split into two groups of synthetic and real data. Although all four
methods show similar performance in the absence of noise, our proposed ap-
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Table 3. Person count estimation. Per-frame mean absolute error (MAE) and standard
deviation is shown for synthetic and real data.

Method Linear [14] DP [20] KSP [12] Ours

MAE (synth.) 0.57±0.78 0.62±0.75 0.57±0.75 0.54±0.81
MAE (real) 1.00±0.95 1.25±1.16 1.52±1.06 0.76±0.76

proach provides the most accurate estimate on the number of people present in
the scenes with realistic data.

6 Discussion and Conclusion

We have presented a method for tracking multiple people while fully preserving
their privacy. A ceiling infrared sensor network serves as a low resolution cam-
era providing only a sparse binary signal about the presence of moving targets.
Building on recent advances in multiple target tracking, we follow an energy
minimization strategy to localize walking people and reconstruct their trajecto-
ries in spite of the impoverished observation data. Our framework outperforms
other methods measured with respect to widely used tracking metrics, both on
synthetic and real-world data.

The low spatial resolution and high noise level of the signal provided by the
sensors clearly limits the ability to resolve all identity ambiguities. A precise
localization as well as targets that remain still for longer time periods causing
a sensor to become inactive still remain challenges that should be addressed in
future work.
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