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We present a novel approach to online multi-target tracking based on recurrent 
neural networks (RNNs). Tracking multiple objects in real-world scenes involves 
many challenges, including a) an a-priori unknown and time-varying number of 
targets, b) a continuous state estimation of all present targets, and c) a discrete 
combinatorial problem of data association. Our solution addresses all of the 
above points in a principled way. 
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Online Multi-Target Tracking 
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Motivation

Exploit power of deep learning for multi-target tracking
Data-driven approach, first step towards end-to-end learning
Efficient inference (up to 300Hz on a CPU)

Experiments
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Challenges

Unknown and time-varying number of targets
Missing, false and noisy detections
Class (ID) assignment is arbitrary

Our Proposed Approach
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Based on Bayesian filtering
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Method MOTA FN FP ID Sw. FPS

MDP [1] 30.3 32,422 9,717 680 1.1

JPDAm [2] 23.8 40,084 6,373 365 32.6

TC_ODAL [3] 15.1 38,538 12,970 637 1.7

RNN+LSTM 19.0 38,706 11,578 1,490 165.2
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Baseline comparison

(O) = Online method
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Existence smoothness

Method MOTA Recall Precision ID Sw.

Kalman+HA (O) 19.2 28.5 79.0 685

Kalman+HA+Post 22.4 28.3 83.4 105

RNN+HA (O) 24.0 37.8 75.2 518

RNN+LSTM (O) 22.3 37.1 73.5 572


