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Motivation

● Learn complex algorithms from data
● Efficient inference
● End-to-end learning
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Contributions

1) Sequential (LSTM) bipartite matching

2) Training with “approximate” ground truth

3) Loss- vs. objective-based training
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Applications

● Data Association: 
Marginalization

● Keypoint Matching: 
Quadratic Programming

 
● Travelling Salesman Problem: 

Combinatorics
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Bipartite Matching

Linear Assignment: s.t. X binary and one-to-one

→ Hungarian (Munkres) Algorithm



A. Milan et al.  | Data-Driven Approximations to NP-Hard Problems |  AAAI 2017 8

Quadratic Assignment Problem

NP-hard



A. Milan et al.  | Data-Driven Approximations to NP-Hard Problems |  AAAI 2017 9

Our Model
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Bootstrapping the Training Set

● What if ground truth is ‘hard to obtain’?
● Start with what we have
● Improve over time
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Keypoint Matching

* Used as ‘ground truth’

Name Accuracy Objective Time [ms]

Branch-and-cut 0.90 10.99 7

IPFP-S [1] (best of 10) * 0.70 10.47 56

LSTM 0.76 10.52 4

[1] Leordeanu et al., 2011
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Travelling Salesman Problem

Given a set of nodes, visit each one exactly once and return to start.
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Pointer-Networks
[Vinyals et al., NIPS*2015]

● Loss:
cross-entropy

● Better: 
objective-based 
training
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Objective-based training

Errors: 0
Length: 310 

Ground Truth
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Objective-based training

Errors: 0
Length: 310 

Errors: 2
Length: 340 

Errors: 2
Length: 400 

Solution 1Ground Truth Solution 2
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Non-differentiable Loss

Tour length
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Results
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Limitations and Discussion

● Time: Training vs. algorithm design
● Input/Output size is fixed
● Problem’s objective is not always clear

(but if it is, use it!)
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Conclusions

● LSTM model for matching

● Improving ‘approximate’ 
training set

● Objective vs. loss-based 
training
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Thank you
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