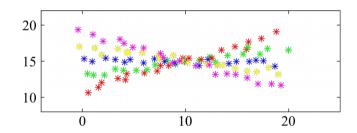
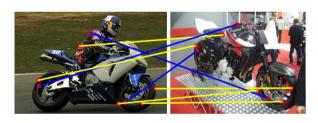
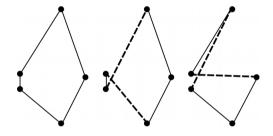
Data-Driven Approximations to NP-Hard Problems

Anton Milan S. Hamid Rezatofighi Ravi Garg Anthony Dick Ian Reid



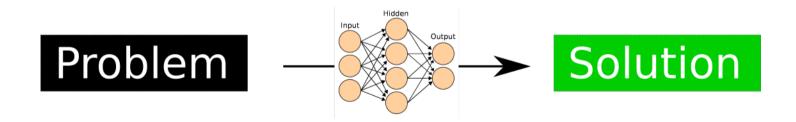




Australian Centre for Visual Technologies

Motivation

- Learn complex algorithms from data
- Efficient inference
- End-to-end learning



Contributions

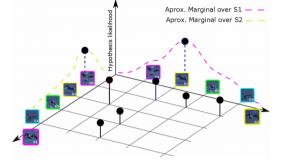
- 1) Sequential (LSTM) bipartite matching
- 2) Training with "approximate" ground truth
- 3) Loss- vs. objective-based training

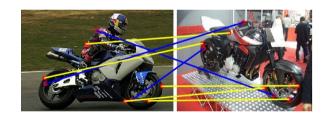
Applications

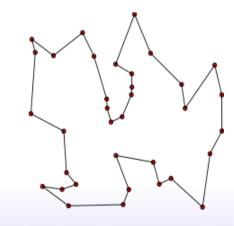
• Data Association: Marginalization

• Keypoint Matching: Quadratic Programming

• Travelling Salesman Problem: Combinatorics







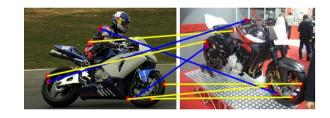
Applications

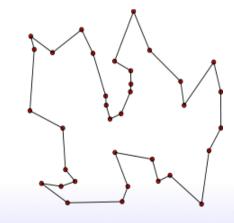
• Data Association: Marginalization

• Keypoint Matching: Quadratic Programming

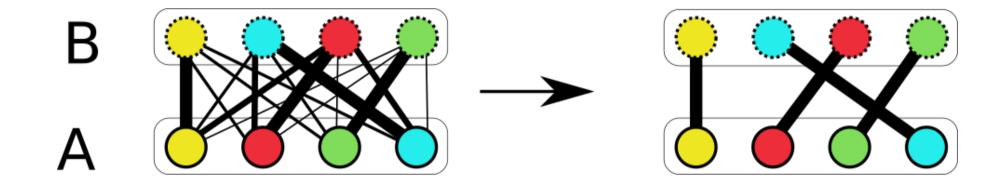
• Travelling Salesman Problem: Combinatorics







Bipartite Matching

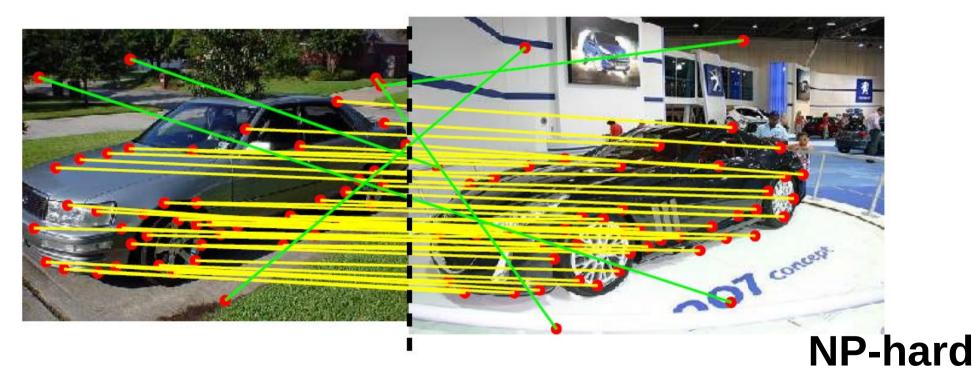


Linear Assignment: $X^* = \underset{X}{\operatorname{argmin}} \quad C^\top X$ s.t. X binary and one-to-one

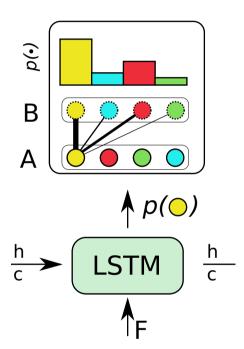
→ Hungarian (Munkres) Algorithm

Quadratic Assignment Problem

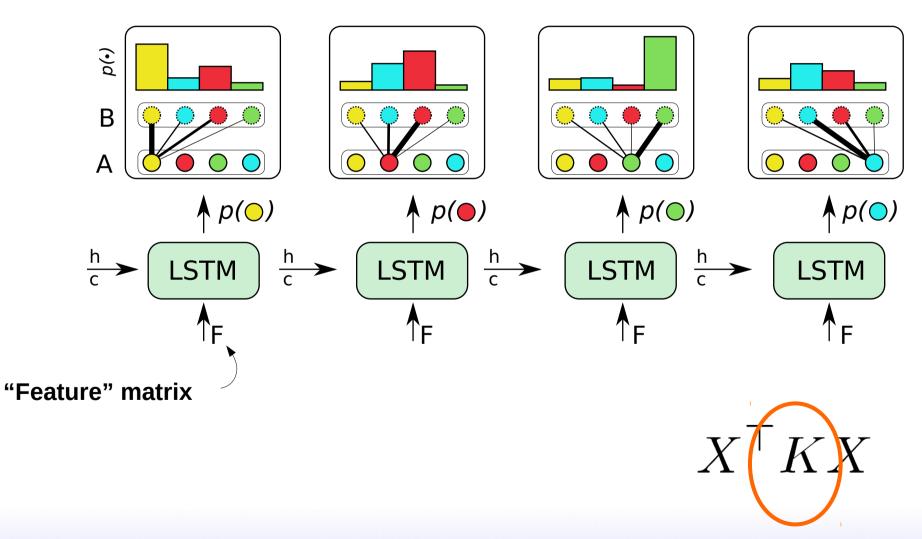
$X^* = \underset{X \in \mathcal{X}}{\operatorname{argmax}} \quad J(X) = X^\top K X$



Our Model



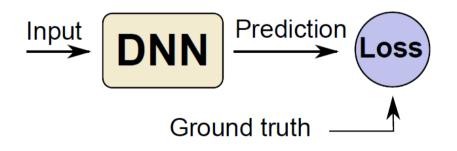
Our Model



A. Milan et al. | Data-Driven Approximations to NP-Hard Problems | AAAI 2017

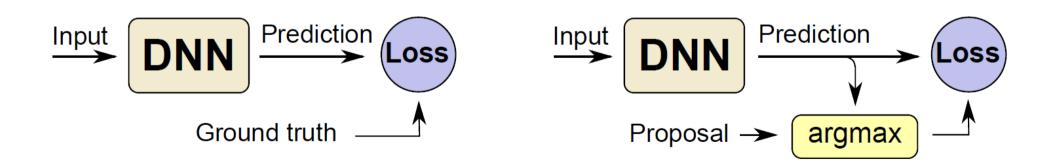
Bootstrapping the Training Set

- What if ground truth is 'hard to obtain'?
- Start with what we have
- Improve over time



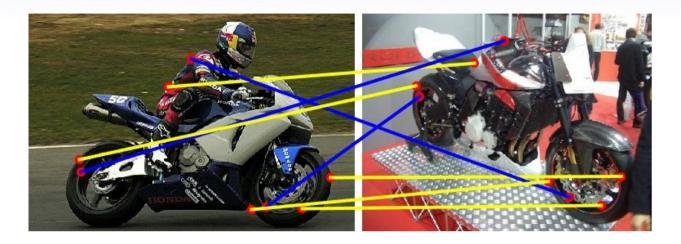
Bootstrapping the Training Set

- What if ground truth is 'hard to obtain'?
- Start with what we have
- Improve over time



 $X^{\top}KX$

Keypoint Matching

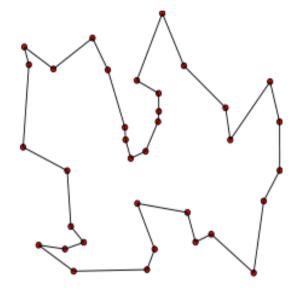


Name	Accuracy	Objective	Time [ms]
Branch-and-cut	0.90	10.99	7
IPFP-S [1] (best of 10) *	0.70	10.47	56
LSTM	0.76	10.52	4

* Used as 'ground truth'

[1] Leordeanu et al., 2011

Travelling Salesman Problem

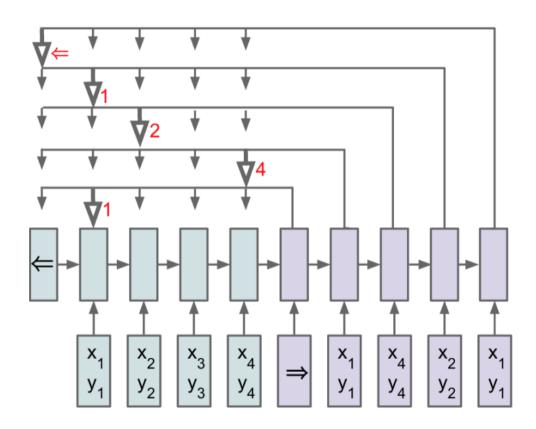


Given a set of nodes, visit each one exactly once and return to start.

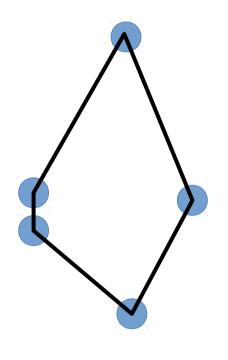
Pointer-Networks

[Vinyals et al., NIPS*2015]

- Loss: cross-entropy
- Better: objective-based training



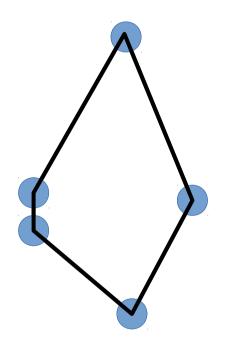
Ground Truth



Errors:0Length:310

A. Milan et al. | Data-Driven Approximations to NP-Hard Problems | AAAI 2017

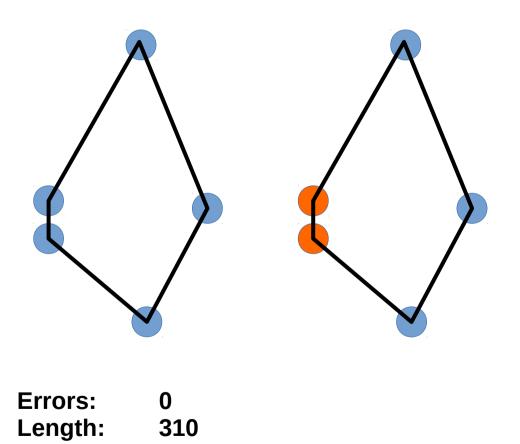
Ground Truth

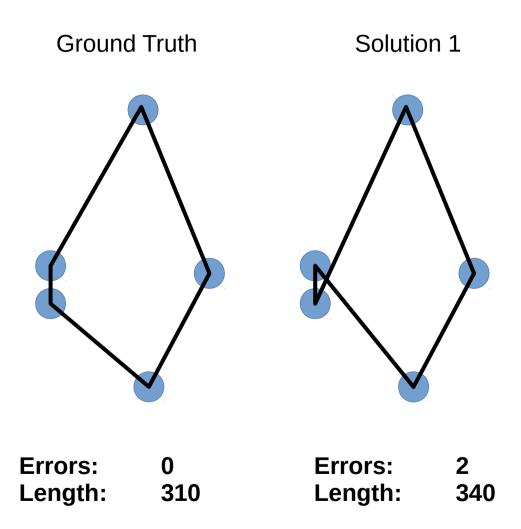


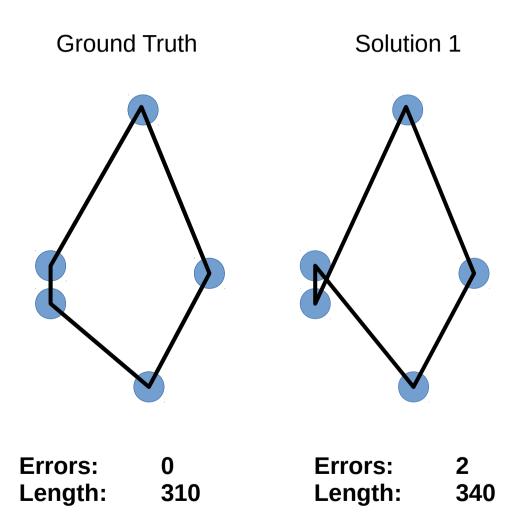
Errors:0Length:310

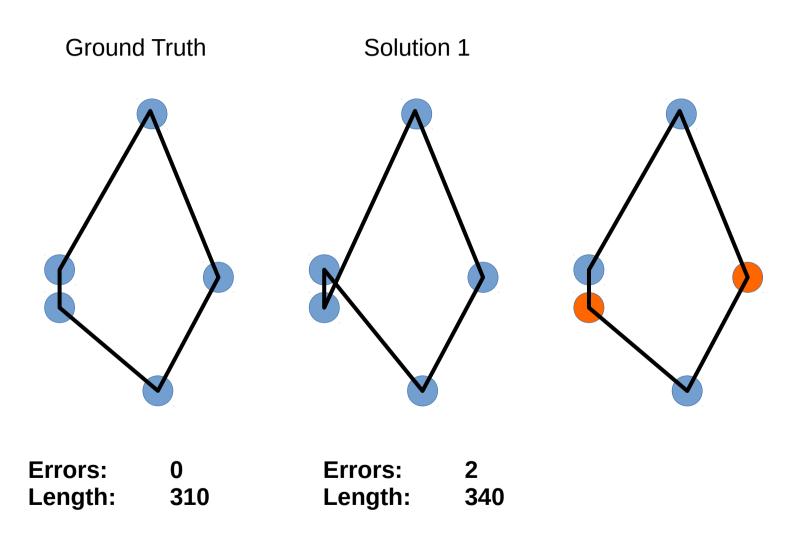
A. Milan et al. | Data-Driven Approximations to NP-Hard Problems | AAAI 2017

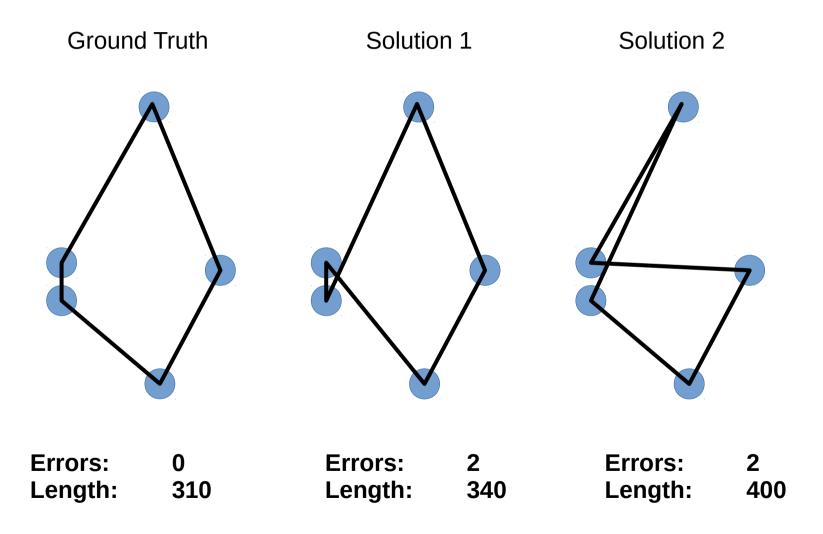
Ground Truth



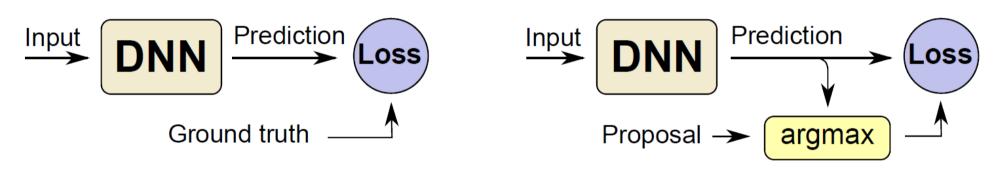






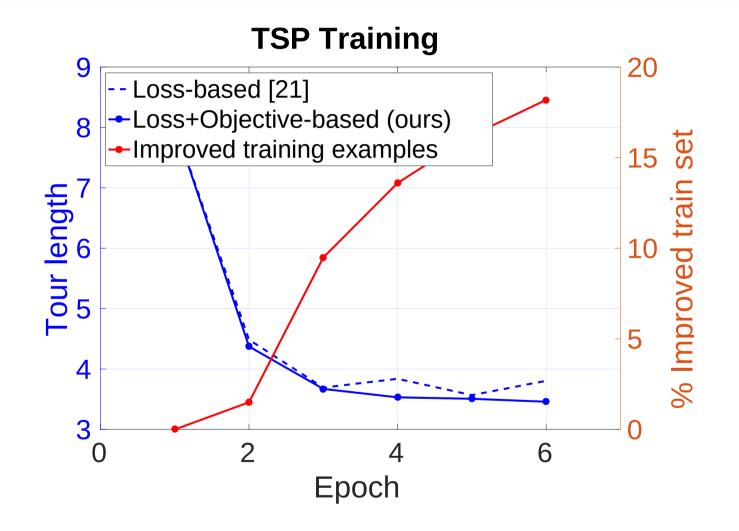


Non-differentiable Loss



Tour length

Results



Limitations and Discussion

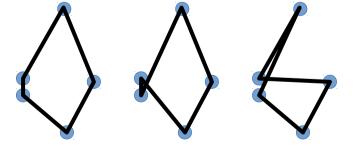
- Time: Training vs. algorithm design
- Input/Output size is fixed
- Problem's objective is not always clear (but if it is, use it!)

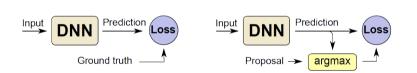
Conclusions

LSTM model for matching

 Improving 'approximate' training set

 Objective vs. loss-based training





 $\frac{h}{c} \rightarrow \left(\text{LSTM} \right) \xrightarrow{h}{c} \rightarrow \left(\text{LSTM} \right) \xrightarrow{h}{c} \rightarrow \left(\right)$

♦ p(●)

↓ p(**○**)

♦ p(**○**)

LSTM $\frac{h}{c}$

LSTM

Thank you